An Interactional Model of Children's Entry into Peer Groups

Martha Putallaz and John M. Gottman

University of Illinois at Urbana-Champaign

Putallaz, Martha, and Gottman, John M. An Interactional Model of Children's Entry into Peer Groups Child Development, 1981, 52, 986–994 The dyadic interaction of popular and unpopular children was compared. Analyses revealed that unpopular children were (1) more disagreeable and (2) less likely to provide a general reason or rule for their disagreement or to suggest a constructive alternative when criticizing a peer. Children of either the same or differing popularity then attempted to enter these dyads. It was found that unpopular children were less likely to be accepted and more likely to be ignored by the groups they entered than popular children. When attempting to enter groups, unpopular children were more disagreeable than popular children and more likely to attempt to call attention to themselves by stating their feelings and opinions, talking about themselves, and asking informational questions than popular children. These strategies were more likely to lead to the children being ignored or rejected by the groups rather than accepted. Some suggestions for intervention were made.

Many preschool and elementary school children fail to acquire any friends, or perhaps only a few friends at best, as measured by sociometric questionnaires (Gronlund 1959, Hymel & Asher, Note 1). Furthermore, evidence has suggested that there are negative consequences associated with having few friends or low levels of acceptance by peers, thus, sociometric measures may be good predictors of psychological risk (see Asher, Oden, & Gottman 1977). The results have been provocative enough to have stimulated interest in developing effective interventions to increase the acceptance of these children by their peers.

To develop such interventions, basic descriptive information is needed concerning possible behavioral differences between popular and unpopular children. However, the amount of such information presently available is limited. Generally, there is support for the conclusion that, among preschoolers, popular children tend to have more positive interactions with their peers than unpopular children (Hartup, Glazer, & Charlesworth 1967, Marshall & McCandless 1957). However, even this conclusion has been limited in two ways. First, the detection of behavioral differences between popular and unpopular children has been more difficult when elementary school rather than preschool children are studied (Asher & Hymel, in press, Gottman, Conso, & Rasmussen 1975; Oden & Asher 1977). In addition, Benson and Gottman (Note 2) have suggested that popular children appear to form their own social sub system, as they were found to initiate and receive positive and neutral interactions primarily within their group. Also supporting Benson and Gottman's membership group interpretation, unpopular children were found to initiate significantly more neutral interactions with other unpopular children than they did with popular children. Thus, increasing a child's popularity may not be a simple matter of increasing the frequency of a child's positive interactions with peers but may also require a shift in membership groups, whose natures we do not yet understand.

Therefore, the major purpose of the present study was to gain additional information about the behavior of popular and unpopular elementary school children when interacting with a popular or unpopular group. To do so, both types of children were observed attempting to join (enter) a game being played by either two popular or two unpopular classmates. The study of entry into groups of familiar peers was included since most intervention programs currently concentrate on helping unpopular or isolated children become integrated into already existing peer groups (e.g., O'Connor).

The authors would like to thank Blair Sheppard and Steven Asher for their insightful comments on earlier drafts of the manuscript. Requests for reprints should be addressed to John M. Gottman, Department of Psychology, University of Illinois, Champaign, Illinois 61820.
Yet there is no empirical knowledge at present of how socially skilled children at a particular developmental level enter groups of their familiar peers (Gottman 1977). In addition, the study provided for the observation of the dyads prior to the arrival of the third child. Thus it was possible to investigate potential behavioral differences between popular and unpopular children in a dyadic interaction situation as well.

A further purpose of the present research was to address some of the methodological issues that have limited past attempts to investigate the interaction of popular and unpopular children. Typically, the observational coding systems used in the past have not been very detailed or descriptive, they often ignored language, for example. Further, only interaction rates have been used. It would seem that children's interactions might be more accurately described in terms of specific sequential patterns rather than by the frequency of individual codes displayed. Finally, the popularity of only one of the children (called the target child) in any social interaction has been considered. Yet, as Benson and Gottman's (Note 2) membership group hypothesis would suggest, children may behave differently depending upon whether they are interacting with someone of a similar or different sociometric status. Therefore, the present study attempted to correct some of the limitations of previous studies by (1) using a more detailed coding system, (2) analyzing the data sequentially, and (3) considering the sociometric status of all interactants in a situation. Since the study is a major departure from earlier work, it is largely exploratory. It is hoped that the results of this research may suggest hypotheses for the development of interventions designed to increase the popularity of socially unaccepted children.

Method

Subjects

A total of 60 children from three racially integrated, working-class schools in the Urbana and Champaign public school systems participated as subjects in this study. Of these children, 51 (30 boys and 21 girls) were enrolled in second grade and the remaining nine children (six boys and three girls) were in third grade.

Procedure

Sociometric and group formation—Children were asked to name three classmates whom they “especially liked” (Oden & Asher 1977). One was added to each child's score every time they were named by another child of the same sex. Only same-sex choices were considered since sex appears to influence elementary school children's choices of whom they like (Gronlund 1959, Singleton & Asher 1977). Children whose scores were higher than the median for their classroom were called popular, the others unpopular. The mean number of nominations received by the popular children varied across classroom from 2.25 to 7.00 choices, with an overall mean of 3.93, while those for the unpopular children varied from 0.38 to 1.60, with an overall mean of 1.15.

Depending upon the size of the class, either one or two of the most popular and least popular children of each sex were designated as entry children. The remaining children were grouped to form dyads, homogeneous by sex and popularity. Each dyad and the same-sex child that would later attempt entry into the dyad were matched so that they were from the same classroom and so that none of the three children were mutual choices on the sociometric test.

In all, 20 dyads of children were formed, 10 popular pairs (five male and five female) and 10 unpopular pairs (seven male and three female). With the addition of an entry child of varying popularity to each dyad, four conditions were created. These conditions involved the entry of a popular child into either a popular (N = 3, 2 male and 1 female) or an unpopular (N = 5, 4 male and 2 female) group, and the entry of an unpopular child into similarly composed popular (N = 7, 3 male and 4 female) or unpopular (N = 4, 3 male and 1 female) groups.

Task—Each of the 20 dyads was videotaped individually through the one-way mirror of a standard research trailer while the children played a word-naming game. The game was played by spinning a needle which landed on one of three categories—first names, animals, or jobs. The player then had to select a letter from a box and think of a word which began with the chosen letter and fit the given category. If one was correctly named, a card was then picked which informed the player of the number of spaces the playing piece could be moved on the game board.

After the dyad indicated that they understood the rules and began to play the game, the experimenter left the trailer and returned to the classroom for the entry child. The rules
of the game were then explained to that child prior to entering the trailer. The dyad was not informed that a third child would attempt to join them. The dyad was allowed to play uninterrupted for 10 min prior to the return of the experimenter with the entry child. The experimenter remained outside the trailer and only instructed the entry child to go into the trailer where the other children would be found already playing the word game but gave no instruction that the child should actually join in the play of the game. Fifteen minutes of additional videotaped data were then obtained on the attempts of the third child to enter the group. After this period, the experimenter terminated the session, asked the children for the evaluations of the game, and returned them to their classroom. A child was considered to have gained entry once the child actually began to play the game. All children had gained entry by the end of the session. Although all children were aware that they could end their participation in the study at any time, none of them chose to do so.

Coding

Verbatim transcripts were made of the children's speech from the videotapes. The thought unit, marked by the transition from one code to another, was the coding unit used in the present research. The interaction coding system developed by Gottman and Parkhurst (1980) to describe children's conversations with their friends was employed (a manual describing the codes is available from the second author). Four new double codes (i.e., codes that can co-occur with all other codes) were added to describe the entry sequence, specifically one entry code (bid for entry) and three group response codes (accept, reject, and ignore). The seven codes from the Gottman and Parkhurst system that co-occurred most frequently with the entry double code resulted in seven types of entry bids. The remaining codes co-occurring with the entry double code were lumped together to form an eighth entry bid, labeled "other." The double codes of accept, reject, and ignore were coded as such regardless of the Gottman and Parkhurst codes they co-occurred with since how the group had accepted, rejected, or ignored the entry child was not of concern, but simply that this consequence to an entry bid had occurred. Thus, there were 11 codes in all to describe the entry sequence, 8 codes describing the entry behaviors, and 3 codes describing the group responses to these bids (see Table 1). For the analyses of the triadic interaction during entry, the responses of the original two children in the dyad were taken together to represent the group response. In this manner, we could still examine bids for entry and the consequent group responses while substantially reducing the number of potential codes to a level permitting analysis.

Assessment of Reliability

For sequential analyses, two reliability statistics are needed, Cronbach's α and Cohen's κ. Cronbach's α in the present study represents generalizability over independent coders, that is, that the variance due to subjects is greater than the variance due to coders or coder \times subject interaction. The design for the generalizability study is a single group (subjects) repeated measures (independent coders) design. Cronbach's α for these studies is the mean square due to subjects (MS_s) minus the mean square residual term (MS_e) divided by MS_s +

TABLE 1

<table>
<thead>
<tr>
<th>CODING SYSTEM DEVELOPED FOR CHILDREN'S ENTRY SEQUENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific entry bid codes</td>
</tr>
<tr>
<td>Information bid is coded whenever the speaker tries to enter the group by giving simple information (e.g., "She's still ahead of you")</td>
</tr>
<tr>
<td>Me bid is coded whenever the entering child makes a statement referring to himself, his possessions, activities, plans, accomplishments, attributes, or abilities (e.g., "I'll take your turn", "Oh, I can think of one")</td>
</tr>
<tr>
<td>Agreement bid is coded when the entering child expresses agreement, compliance, or pleasure with one of the group members or with what he does, has, or wants (e.g., "He's right that it's his turn")</td>
</tr>
<tr>
<td>Demand bid is coded whenever the entering child demands a response or attention from the group (e.g., "Just start all over again")</td>
</tr>
<tr>
<td>Feeling bid is coded whenever the entering child expresses any wants, feelings, opinions, likes/dislikes, or needs (e.g., "I want Jason to win")</td>
</tr>
<tr>
<td>Disagreement bid is coded whenever the entering child expresses noncooperation or disapproval at one of the group members or his statements, possessions, or behavior (e.g., "You can't do that")</td>
</tr>
<tr>
<td>Question-for-information bid is coded whenever the entering child requests simple information from the group (e.g., "What is this thing here?")</td>
</tr>
<tr>
<td>Other bid includes all other strategies used to attempt entry into the group</td>
</tr>
</tbody>
</table>

Group response codes

Accept is coded whenever the group responds positively to the entering child and his or her attempts at entry

Reject is coded whenever the group responds negatively to the entering child and his or her attempts at entry

Ignore is coded whenever the group fails to respond to the entering child and instead ignores his or her bids for entry

Note — Bid for entry is coded whenever the entering child makes attempts to enter and become integrated into the group.
Developed by Gottman and Parkhurst (1980), across all transcripts and one kappa statistic an off-diagonal entry indicates they disagreed. An analysis by tying agreement to specific units of the Gronbach matrix between independent coders (Hollenbeck 1978) is used. This produces a repeated measure of diagonal to diagonal + off-diagonal frequencies. A diagonal entry means the two coders agreed on the code at the exact speech unit of transcripts while an off-diagonal entry indicates they disagreed about the code they assigned to that particular speech unit. We computed one matrix across all transcripts and one kappa statistic across all codes. For the coding system developed by Gottman and Parkhurst (1980), the Cohen’s κ was 0.914, while for the added entry codes the Cohen’s κ was 0.789 (for a more detailed discussion of reliability issues, see Gottman & Parkhurst [1980]).

Sequential Analysis

A sequential connection between two codes, A and B, occurs when knowledge that the antecedent, A, has occurred, reduces uncertainty in predicting the occurrence of the consequent, B. To accomplish this the conditional probability, $p(B/A)$, is compared to the unconditional probability, $p(B)$. The z-score statistic proposed by Sackett (1977) and derived by Gottman (1979) was used for this comparison. If z exceeds 2.0 a significant sequential connection will be said to have occurred. When comparing sequences across groups, if z scores differ by 2.0 they will be said to be significantly different. These decision rules were recommended by Sackett (1977) and Gottman and Parkhurst (1980), respectively.

Results

Dyadic Interaction

To examine whether the styles of dyadic interaction prior to the entry of a third child differed as a function of the popularity composition of the dyad, the ratio of agreement to disagreement was assessed for each dyad. This ratio provides an index of the overall positivity to negativity of the interaction, a higher value being indicative of a greater degree of positivity (Riskin & Faunce 1970). For popular dyads the mean ratio was 2.86, while for the unpopular dyads this ratio was 1.28. The frequencies of the agreement and disagreement codes, as used by the two types of dyads, were compared by means of two separate 2×2 χ^2 analyses. Popular children disagreed less than unpopular children (3.3% vs 6.7% of total statements), $\chi^2(1) = 19.93$, $p < 0.01$, but there was no significant difference with respect to the amount of agreement shown. A 2×2 (popularity of group \times sex) log-linear analysis (Fienberg 1978) was performed, using the procedures proposed by Bock (1974), on the frequencies of agreements and disagreements to examine whether the sex of the group had an influence on these results. A significant main effect was found, however, only for the popularity of the group, reduction in $\chi^2(1) = 17.77$, $p < 0.01$, while the sex of the group and the interaction effect between these two factors were not significant. Therefore, the difference in the agreement to disagreement ratio appears to be due to unpopular children disagreeing more than popular children.

Perhaps the higher incidence of disagreement among unpopular dyads is attributable to...
differences in the consequences of disagreement in the two types of dyads. There were two (empirically obtained) predictable consequences of disagreement, and these involved use of two subsequent statements by the same child who disagreed: (1) giving a reason for the disagreement, and (2) the use of the general rule. Refer to Table 2 and examine those z scores that exceeded 2.0 for popular and unpopular children. As can be seen, statement of a rule (coded as rule) was the predictable sequence for popular dyads while giving a reason for the disagreement (coded as clarifies message) was the predictable sequence for unpopular dyads.

We examined further all instances coded as either giving a reason or rule use following disagreement. By inspection it appeared that when popular children disagreed, they tended to cite a general rule as the basis for their disagreement and then provided an acceptable alternative action for the other child. An example of the use of a rule following disagreement was "No, you ain't You ain't supposed to use this first You're supposed to pick one of these." In contrast, unpopular children would typically explain their disagreement by giving a reason very specifically related to the previous act of the other child, without providing an alternative action for that child. An example of giving a reason following disagreement was "No Can't say 'bank' again [after the child had used the word bank on a previous turn at the game]."

Table 2

<table>
<thead>
<tr>
<th>Reason for His or Her Disagreement</th>
<th>Statement of a Rule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Popular</td>
<td>0.29</td>
</tr>
<tr>
<td>Unpopular</td>
<td>0.150</td>
</tr>
</tbody>
</table>

* Significant by the decision rule, $z > 2.0$

Entry of a Third Child

A child was considered to have gained entry into the group once the child actually began to play the game. Using this definition, all children did eventually secure entry by the end of the observational session. All entering children made entry bids that were accepted, rejected, and ignored by the group at some point during their entry attempt. An acceptance does not necessarily imply that the entering child has gained entry but merely that he has been responded to positively by the group.

Popular children used an average of 15.89 bids before gaining entry, while unpopular children used an average of 22.82 bids. $\chi^2(1) = 12.07, p < 0.001$. A Mann-Whitney U test (Siegel 1956) computed on ranks derived from the amount of time required to gain entry produced a significant effect for the popularity of the entering child, $U(9,11) = 26, p < 0.05$. It required both more bids and more time for unpopular children to gain entry into groups.

The relationship between the popularity of the entering child and the popularity status of the group entered was examined. A 2×2 χ^2 analysis indicated that there was a significant interaction between these factors, $\chi^2(1) = 19.5, p < 0.001$, for the number of bids displayed. A Kruskal-Wallis one-way analysis of variance (Siegel 1956) computed on the time...
required for entry was not significant. However, an examination of the cell means for
time revealed a pattern similar to that
describing the resulting cell means for bids re-
quired for entry. Popular children entered a
popular group (their membership group) using
fewer bids ($\bar{x} = 11.67$) than any other group
of entering children. The most difficult entry
configuration was when an unpopular child was
required to enter a popular group ($\bar{x} = 24.57$).
The groups in the remaining two entry con-
ditions were not different with respect to bids
required for entry. Popular children entering
an unpopular group required a mean of 18 bids
while unpopular children entering an unpopu-
lar group took an average of 19.75 bids.

We next considered whether it was in-
deed the case, as would seem likely from the
results found thus far, that unpopular children
were rejected and ignored more and accepted
less than popular children, thereby making en-
tering into groups more difficult for them to atta-

A $2 \times 2 \times 2$ (popularity of child \times popularity
of group \times sex) log-linear analysis was per-
formed on the number of times each child was
accepted, rejected, or ignored by the group.
The simplest model fitting the data showed
only a significant main effect for the popularity
of the entering child, reduction in $\chi^2(2) =
12.97, p < 0.01$. It appears, then, that only the
entering child’s popularity affects the result-
ng probability that the child will be either rejected
or ignored by the group. An examination of
this main effect showed that popular children
entering a group were as likely as unpopular
children to be rejected (0.15 vs 0.17), more
likely to be accepted (0.73 vs 0.57), and less
likely to be ignored (0.11 vs 0.26).

In order to obtain a better understanding
of why unpopular children experienced more
difficulty than popular children when entering
a group, we examined whether popular and
unpopular children had similar response reperto-
ires for entry. Since both groups of children
displayed all eight entry strategies studied, the
evidence did not support a skills-deficit hy-
pothesis, although our coding system would not
have detected any differences in timing or sty-
listic execution of the bids. Also, the probabil-
ities that describe the entry-response hierarchy
preference for each entry behavior for popular
and unpopular children correlated signifi-
cantly, $r = 0.76, p < 0.05$. The children, then, used
each entry bid with moderately similar prob-
abilities, regardless of popularity (see table 3).

<table>
<thead>
<tr>
<th>BEHAVIOR USED AS BID FOR ENTRY</th>
<th>PROBABILITY OF EACH BEHAVIOR</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POPULAR CHIL...</td>
</tr>
<tr>
<td>Information</td>
<td>24</td>
</tr>
<tr>
<td>Demand</td>
<td>13</td>
</tr>
<tr>
<td>Question for information</td>
<td>15</td>
</tr>
<tr>
<td>Me</td>
<td>11</td>
</tr>
<tr>
<td>Feeling</td>
<td>06</td>
</tr>
<tr>
<td>Agreement</td>
<td>13</td>
</tr>
<tr>
<td>Disagreement</td>
<td>06</td>
</tr>
<tr>
<td>Other</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>UNPOPULAR CHIL...</td>
</tr>
<tr>
<td>Information</td>
<td>22</td>
</tr>
<tr>
<td>Demand</td>
<td>11</td>
</tr>
<tr>
<td>Question for information</td>
<td>20</td>
</tr>
<tr>
<td>Me</td>
<td>15</td>
</tr>
<tr>
<td>Feeling</td>
<td>09</td>
</tr>
<tr>
<td>Agreement</td>
<td>08</td>
</tr>
<tr>
<td>Disagreement</td>
<td>09</td>
</tr>
<tr>
<td>Other</td>
<td>05</td>
</tr>
</tbody>
</table>

Why, then, did the unpopular children ex-
erience more difficulty entering groups de-
spite using the same entry behaviors in roughly
the same ordered response hierarchy as pop-
ular children? Perhaps the bids most preferred
by the unpopular children were not those
which would be most effective in terms of gain-
ing them entry. To test this possibility, we
computed a cost-benefit score for each entry
behavior by subtracting the conditional prob-
ability of the bid leading to nonacceptance of
the user by the group (i.e., the user being
either rejected or ignored) from the condi-
tional probability of the bid leading to ac-
ceptance (see table 4). Thus, a high positive
score would be indicative of an entry bid which
had a high probability of leading to acceptance
and a low probability of leading to the group
rejecting or ignoring the user, while the con-
verse would be true of a high negative score.
Next, the correlation between the uncondi-
tional probabilities of each entry bid and its cor-
responding cost-benefit score was computed.
This correlation would allow us to ascertain
whether the entry bids which had the highest
probability of occurring corresponded to those
which had the most favorable cost-benefit score.
For popular children, this correlation was 74,
$p < 0.025$, for entry into popular groups and
51, $p < 0.10$, for entry into unpopular groups.
For unpopular children, this correlation was
— 06 for entry into unpopular groups and — 13
for entry into popular groups, neither corre-
lation was significant. Popular children ap-
peared to act to maximize their benefits and minimize
their costs, but this was not true of unpopular
children. We are not implying that unpopular
children were deliberately intending to be ig-
ored or rejected when attempting to enter.
groups, but this was the net effect of their behavior. Of course, these analyses do not rule out the possibility that unpopular children were being ignored or rejected for some reason (e.g., reputation, physical attractiveness) other than the type of entry bid they displayed. The behavioral differences detected here, however, give support for the further examination of the children’s use of entry bids.

What specifically were unpopular children doing during entry that differed from popular children? We next examined whether there was any difference in the frequency of usage of any particular bids. First, the computed agreement to disagreement ratio was 2.17 for the entering popular children in contrast to 0.89 for the entering unpopular children, a finding consistent with the previous analysis of the dyadic preentry data. Thus, even when entering, unpopular children were more disagreeable than popular children. Further, when taken as a group, unpopular children also were more likely to ask questions for information, $\chi^2(1) = 5.634$, $p < .05$, say something about themselves, $\chi^2(1) = 5.154$, $p < .05$, disagree, $\chi^2(1) = 4.614$, $p < .05$, and state their feelings, $\chi^2(1) = 4.074$, $p < .05$, than popular children. Thus, although the general organization of the entry-response hierarchies was similar for both types of children, they differed in their use of four particular bids.

Discussion

Similar to previous research with preschool children, the results of the present study showed the behavior of unpopular elementary school children to be somewhat more negative than that of their popular peers. An analysis of their dyadic interaction showed them to disagree more often and to be less likely to give a general reason (rule) when criticizing a peer than popular children. Even when attempting to enter groups of their peers, unpopular children were still more disagreeable than popular children. Not surprisingly, then, unpopular children also experienced more difficulty entering groups than popular children. They required both more bids and more time to gain entry and were accepted less and ignored more by these groups than popular children.

Contrary to the explanation that might be offered for this difficulty by some present researchers, unpopular children did not seem to...
possess an entry-skills deficit. Both groups of children were found to display all entry strategies studied, although our coding system would not have detected any differences in timing or stylistic execution of the bids. However, as a group, unpopular children did use some of these entry bids differently than popular children. Specifically, they were more apt to ask informational questions, speak about themselves, disagree, and state their feelings and opinions more than popular children. These four strategies appear to share at least one commonality. They all attempt to call the group’s attention to the user. That is, unpopular children seemed to try to exert control and divert the group’s attention to themselves, rather than attempt to integrate themselves into the ongoing conversation of the group. They seemed to introduce new conversational topics abruptly and direct the conversation to themselves by making self-statements, stating their feelings and opinions, and disagreeing with the group members more than popular children. When used by the children, these strategies had a high probability of resulting in the group’s ignoring or rejecting them. This point can best be illustrated by an instance from an actual transcript in which an unpopular child attempted to call the group’s attention to herself repeatedly by stating her feelings but was instead continually ignored by the group. The name of the entering child is italicized.

Janet: Okay, I want this one again.

Terry: This is fun, ain’t it?

Janet (to Vera): Do you want this one again?

Vera: I want this one.

Terry: This is a nice room, ain’t it?

Janet (to Vera): You can have this one. Here.

Terry: This is a nice table, ain’t it?

Janet (to Terry): Pick your one.

As can be seen, this unpopular child repeatedly tried to divert the group from their ongoing activity of choosing playing pieces to a discussion concerning how fun the game was, how nice the room was, and, finally, even how nice the table was, to no avail. The group members simply continued to ignore her.

These findings suggest an interesting parallel between the behavior of unpopular children and the behavior of newcomers. After studying the process of assimilation of newcomers into groups of 6- and 7-year-old children, Phillips, Shenker, and Revitz (1951) proposed that the new child’s most successful strategy for integration was to first determine the “frame of reference” common to the group members (e.g., activities, goals) and then to establish himself or herself as sharing in this frame of reference. Specifically, the child should first attempt to join the group’s activities by imitating the actions or words of a child in the nucleus group. This would account for the apparent success in the present study of entry bids involving agreement and exchanges of information with group members and for the pronounced failure of disagreement when employed as an entry strategy. Only later in the assimilation process did Phillips et al propose that the newcomer should attempt to initiate, direct, or otherwise influence group activities. The present research found that unpopular children frequently used entry strategies which attempted to influence the ongoing group activity by directing the group’s attention to themselves by making self-statements, stating their feelings, asking informational questions not relevant to the group’s activity, and disagreeing with group members. Phillips et al further suggested that the premature use of such strategies would lead to the child being ignored by the group, a finding well supported by this study.

The present research would suggest several means of intervening to increase the popularity of socially unacceptable children. First, any intervention should involve a reduction in the frequent display of disagreement by unpopular children. Further, it would be helpful to teach these children ways of preventing disagreement from continuing, such as giving a general reason for disagreement (e.g., a rule) and suggesting an alternative action for the other child. In addition, any intervention should attempt to reduce unpopular children’s use of entry strategies that attempt to draw attention to themselves. Instead they should be encouraged to determine the group’s frame of reference by asking relevant questions and then to establish themselves as sharing in this frame of reference by agreeing and exchanging information with the group members.

It should be remembered, however, that even popular children have difficulty entering groups. The present study found them to be rejected or ignored 26% of the time. This would suggest that even if unpopular children were to behave just like popular children when attempting to join groups, the probability of their being rejected or ignored by the group would still remain high. It is thus crucial that intervention programs provide some sort of “immunization” for unpopular children against being rejected or ignored. It would further seem es-
sential to add a component to the intervention program which would provide a mechanism for increasing the group's likelihood of accepting new members. Establishing some form of incentive for the group members to accept other children might be one way to accomplish this goal.

Reference Notes

References

This document is a scanned copy of a printed document. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material.