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Mathematics of Marital Conflict: Qualitative Dynamic
Mathematical Modeling of Marital Interaction
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University of Washington

This article presents a new nonstatistical mathematical approach to modeling marital
interaction by means of nonlinear difference equations. The application made of this
modeling process in this article is to generate theory in order to understand J. M.
Gottman and R. W. Levenson's (1992) report of the ability of one variable derived
from a balance view of marital interaction to predict marital dissolution in a prospec-
tive study. Parameters are introduced that reflect uninfluenced husband and wife set
points, emotional inertia, and influence function. These parameters are subjected to
various examinations of validity with other data that reflect patterns of marital
interaction and the cascade toward marital dissolution. Results suggest the hypothesis
that unstable marriages are characterized at Time 1 by a mismatch in husband and wife
influence functions. The modeling method makes it possible to fit a couple's equations
under one set of conditions, then to simulate the couple's interaction under different
conditions, and then to conduct experiments to test the validity of these simulations.
The method provides a new approach toward the building of theory in family
psychology.

This article introduces a new approach to the
modeling of social interaction using the mathe-
matics of difference and differential equations.
These equations express, in mathematical form,
a proposed mechanism of change over time.
They do not represent a statistical approach to
modeling; rather they are designed to suggest a
precise mechanism of change. This method has
been used with great success in the biological
sciences (Murray, 1989). The method is usually
a quantitative approach that requires the mod-
eler to be able to write down in mathematical
form, on the basis of some theory, the causes of
change in the dependent variables. For example,
in the classic predator-prey problem, a modeler
writes down that the rate of change in the pop-
ulation densities is some function of the current
densities (e.g., Murray, 1989). Although this
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example is a simple representation of the preda-
tor-prey phenomenon, it has served well as an
initial exploratory model. The equations are de-
signed to enable modelers to write down the
precise form of rates of change over time. The
ideal mathematical technique for describing
change is the area of differential equations.
These equations usually use linear terms or lin-
ear approximations of nonlinear terms, and they
often give very good results. In fact, most of the
statistics used in the field of family psychology
are based on linear models. In the area of dif-
ferential equations, linear equations simply as-
sume that rates of change follow generalized
straight line functions of the variables rather
than curved line functions.1

However, in recent years it has become clear
that most systems are complex and must be
described by nonlinear terms. It is interesting
that by the use of nonlinear terms in equations
of change, some very complex processes can be

1 For example, the equation y' = 2y is linear,
whereas the equation y' = 2sin(y) is nonlinear. For
regions of y close to zero, however, sin(y) = y is a
good approximation, and so the linear equation is a
good approximation of the nonlinear when y is close
to zero.
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represented with very few parameters. Unfortu-
nately, unlike many linear equations, these non-
linear equations are generally not solvable in
closed functional mathematical form. For this
reason, the methods are called qualitative, and
visual methods must be relied on. For this pur-
pose, numerical and graphical methods have
been developed, such as phase space plots.
These visual approaches to mathematical mod-
eling can be very appealing in engaging the
intuition of a scientist working in a field that has
no mathematically stated theory. If a scientist
has an intuitive familiarity with the data of the
field, our approach may suggest a way of build-
ing theory using mathematics in an initially
qualitative manner. The use of these graphical
solutions to nonlinear differential equations
makes it possible to talk about "qualitative"
mathematical modeling. In qualitative mathe-
matical modeling, one searches for solutions
that have similarly shaped phase space plots.

In modeling marital interaction, we con-
fronted an interesting dilemma. We could not
come up with any theory we knew of to write
down the equations of change (linear or nonlin-
ear) in marital interaction over time. Therefore,
we developed instead an approach that uses
both the data and the mathematics of differential
or difference equations in conjunction with the
creation of qualitative mathematical representa-
tions of the forms of change. The expressions
we wrote down were then used with the data to
test our qualitative forms. What we discovered
was different about our approach was that we
needed to use the modeling approaches to gen-
erate the equations themselves. Thus, the objec-
tives of the mathematical modeling in our case
became to generate theory.

It is our belief that the "test" of these quali-
tative forms of change should not be an auto-
matic process, as with a t test. Instead, we
suggest that the data be used to guide scientific
intuition so that equations of change are theo-
retically meaningful. It is this use of mathemat-
ical modeling, which generated a theory of
change in marriages, that we explore in this
article. In an area where it is difficult to use a
priori quantitative mathematical theory for de-
scribing the processes of interaction, we have
found it useful to use a qualitative mathematical
modeling approach, the purpose of which is the
generation of mathematical theory. We believe
that this approach is valuable and quite general.
Why would one wish to pursue this kind of

mathematical modeling at all? The answer is
that it can provide two new things: First, the
modeling provides a new language for thinking
about marital interaction and change over time,
and second, once equations are compiled for a
couple, their behavior can be simulated in cir-
cumstances other than those that generated the
data. Precise experiments can then be done to
test whether these simulations are valid. In this
manner, theory is built and tested through the
modeling.

In our case, we began with a phenomenon,
recently reported by Gottman and Levenson
(1992), that one variable descriptive of specific
interaction patterns of the balance between neg-
ativity and positivity was predictive of marital
dissolution. We set out to try to generate theory
that might explain this phenomenon.

Method

Review of Gottman and Levenson

Gottman and Levenson (1992) used a methodol-
ogy for obtaining synchronized physiological, behav-
ioral, and self-report data in a sample of 73 couples
who were followed longitudinally between 1983 and
1987. By means of observational coding of interac-
tive behavior with the Rapid Couples Interaction
Scoring System (RCISS; Krokoff, Gottman, & Hass,
1989), couples were divided into two groups, called
regulated and nonregulated. This classification was
based on a graphical method originally proposed by
Gottman (1979) for use with the Couples Interaction
Scoring System, a predecessor of the RCISS.2 On
each conversational turn, the total number of positive
RCISS speaker codes minus the total number of
negative speaker codes was computed for each
spouse. Then, the cumulative total of these points
was plotted for each spouse (see Figure 1). The
slopes of these plots, which were thought to provide
a stable estimate of the difference between positive
and negative codes over time, were determined
through linear regression analysis. If both husband
and wife graphs had a positive slope, they were called
regulated; if not, they were called nonregulated. This
classification is referred to as the Gottman-Levenson
variable. Using Cohen's kappa, reliability for all
RCISS subcodes taken together was .72. All couples,
even happily married ones, had some amount of

2 These codes were combined into the following
four subscales for each spouse: (a) Complaint/Criti-
cism, (b) Defensiveness, (c) Contempt, and (d) Lis-
tener Withdrawal From Interaction. For the individ-
ual speaker codes, kappas ranged from .70 to .81.
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negative interaction; similarly, all couples, even un-
happily married ones, had some degree of positive
interaction. Computing the graph's slope was guided
by a balance theory of marriage—namely, that those
processes most important in predicting dissolution
would involve a balance, or a regulation, of positive
and negative interaction. Thus, the terms regulated
and nonregulated have a very precise meaning here.
Regulated couples were defined as those for whom
both husband and wife speaker slopes were signifi-
cantly positive; nonregulated couples had at least one
of the speaker slopes that was not significantly pos-
itive. By definition, regulated couples were those
who showed, more or less consistently, that they
displayed more positive than negative RCISS codes.
Classifying couples in the current sample in this
manner produced two groups consisting of 42 regu-
lated couples and 31 nonregulated couples.3

1987 Follow-Up

In 1987, 4 years after the initial assessment, the
original participants were recontacted and at least one
spouse (70 husbands and 72 wives) from 73 of the
original 79 couples (92.4%) agreed to participate in
the follow-up. Information on marital status was
obtained.

Observational Coding: Validity Measures

The videotapes of the problem area interaction
were coded with the following two observational
coding systems: The RCISS provided the means for
classifying couples into the regulated and nonregu-
lated marital types, as well as for providing base rates
of specific positive and negative speaker and listener
codes. The Marital Interaction Coding System
(MICS; Weiss & Summers, 1983) was used as mea-
sures of convergent validity. MICS codes were col-
lapsed into three negative summary speaker codes:
(a) defensiveness, which was the sum of excuse, deny
responsibility, negative solution, and negative mind
reading by the partner, (b) criticism, which was the
sum of disagreement and criticism, and (c) contempt,
which was the sum of noncompliance, verbal con-
tempt, command, and complaint. Despite the fact that
we were to model the speaker's behavior, we also
included a fourth summary MICS code that describes
the listener's disengagement from the interaction:
withdrawal from interaction, which is the sum of
negative listener behaviors, no response, not track-
ing, turn off, and incoherent talk. Codes were as-
signed continuously by coders for 30-s blocks.4

Means reported for the MICS are based on the total
number of codes in 15-min periods. A sample of
every videotape was independently coded by another
observer and a confusion matrix (i.e., a matrix of
counts of agreements and disagreements for two ob-

servers) for each code category was computed. The
average weighted Cohen's kappa for this coding (all
individual subcodes, summed over all couples) was
.60. For the four negative summary codes, the overall
kappas were higher, ranging between .65 and .75.

Positive Affect

One of the first things to disappear when a mar-
riage is ailing is positive affect, particularly humor
and smiling. In this study, the parameters of our
equations were also correlated with the amount of
laughter (assessed with the RCISS) and the amount
of smiling (measured by coding facial expressions
with Ekman and Friesen's, 1978, Facial Action Cod-
ing System). Only Duchenne smiles (which include
both zygomatic and orbicularis oculi contraction)
were measured, since these have been found to be
related to genuine felt positive affect.

Results From Gottman and Levenson

Figure 2 summarizes the Gottman and Levenson
(1992) results for the dissolution variables of their
dissolution cascade. The dissolution cascade is a
Guttman scale in which precursors of separation and
divorce were identified as continued marital unhap-
piness and serious thoughts of dissolution.

Marital Typology

Gottman (1994) proposed and validated a typology
of three types of longitudinally stable marriages with
distinct Time 1 marital interaction patterns; these
interaction patterns differed from the Time 1 interac-
tion patterns of couples heading for dissolution.
There were three groups of stable couples: validators,
volatiles, and avoiders, who could be distinguished
on problem-solving behavior and specific affects and,
through the use of log-linear analysis, on one variable
designed to provide an index of the amount and
timing of persuasion attempts. There were two
groups of unstable couples: hostile and hostile-de-
tached, who could be distinguished from one another
on problem-solving behavior and on specific nega-
tive and positive affects. The hostile—detached group
was significantly more negative (more defensive and
contemptuous) than the hostile group. Gottman

(1993) reported that there was a rough constant that
was invariant across each of the three types of stable

3 We model the unaccumulated data later in this
article.

4 The MICS currently employs double codes,
which refer to coding a behavior as simultaneously
both one code and another code. Double codes were
treated as additional single codes for this research.
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Figure 1. Cumulative Rapid Couples Interaction Scoring System (RCISS) speaker point graphs for
a regulated (low risk) and a nonregulated (high risk) couple. Pos-Neg = Positive-Negative. Revised
art from "Marital Processes Predictive of Later Dissolution: Behavior, Physiology, and Health," by
J. M. Gottman and R. W. Levenson, 1992, Journal of Personality and Social Psychology, 63, p. 225.
Copyright 1992 by the American Psychological Association.

couples. This constant, the ratio of positive to nega-
tive RCISS speaker codes during conflict resolution,
was about 5, and it was not significantly different
across the three types of stable marriages. Perhaps
each adaptation to achieve a stable marriages, or each
stable couple type represents a similar kind of adap-
tation, although the marriages were quite different.
The volatile couples reached the ratio of 5 by mixing
a lot of positive affect with a lot of negative affect.

The validators mixed a moderate amount of positive
affect with a moderate amount of negative affect. The
avoiders mixed a small amount of positive affect with
a small amount of negative affect. Each does so in a
way that achieves roughly the same balance between
positive and negative. We can speculate that each
type of marriage has its risks, benefits, and costs. It is
possible to speculate about these risks, costs, and
benefits based on what we know about each type of
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Figure 2. Outcome data from the marital dissolution cascade for high- and low-risk marriages.
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marriage. The volatile marriage tends to be quite
romantic and passionate, but has the risk of dissolving
to endless bickering. The validating marriage, which
is the current model used in marital therapy, is calmer
and intimate; these couples appear to place a high
degree of value on companionate marriage and shared
experiences, not on individuality. The risk may be
that romance will disappear over time and that the
couple will become merely close friends. Couples in
the avoiding marriage avoid the pain of confrontation
and conflict, but they risk emotional distance and
loneliness. Gottman (1994) also found that the three
types of stable marriages differed in the amount and
timing of persuasion attempts. Volatile couples en-
gaged in high levels of persuasion and did so at the
very outset of the discussion. Validators engaged in
less persuasion than did volatile couples and waited to
begin their persuasion attempts until after the first
third of the interaction. Conflict-avoiding couples
hardly ever attempted to persuade one another. We
wondered whether these five types of marriage could
be discriminated using the parameters and functions
derived from the mathematical modeling.

Mathematical Modeling

The goal of the mathematical modeling was to
dismantle the RCISS point graphs of (unaccumu-
lated) positive minus negative behaviors at each turn
into components that had theoretical meaning. This
process was an attempt at understanding the ability of
these data to predict marital dissolution through the
interactional dynamics. We began with the Gottman-
Levenson dependent variable and dismantled it into
components that represented (a) a function of inter-
personal influence from spouse to spouse and (b) the
terms containing parameters related to an individu-
al's own dynamics. This dismantling of RCISS
scores into influenced and uninfluenced behavior
represents our theory of how the dependent variable
may be decomposed into components that suggest a
mechanism for the successful prediction of marital
stability or dissolution. The qualitative portion of our
equations lies in writing down the mathematical form
of the influence functions.

An influence function is used to describe the cou-
ple's interaction. The mathematical form is repre-
sented graphically, with the *-axis as the range of
values of the dependent variable (positive minus neg-
ative at a turn of speech) for one spouse and the
y-axis the average value of the dependent variable for
the other spouse's immediately following behavior,
averaged across turns at speech. To illustrate the
selection of an analytical form for the influence func-
tion, we can begin with the simple assumption that
there is a threshold before a positive value has an
effect in a positive direction and another threshold
before a negative value has an effect in a negative

direction. A more reactive spouse has a lower thresh-
old of response. The parameters of these influence
functions (e.g., the point at which the spouse's neg-
ativity starts having an effect) might vary as a func-
tion of culture, marital satisfaction, level of stress the
spouses were under at the time, their individual tem-
peraments, and so forth. These latter ideas can be
used at a later time to improve the model's generality
and predictive ability. We then assume that the
amount of influence will remain constant across the
remainder of the ranges of the variable. This is, of
course, only one kind of influence function that we
could have proposed. For example, we could have
proposed that the more negative the dependent vari-
able, the more negative the influence, and the more
positive the dependent variable, the more positive the
influence (reminiscent of Alexander's defensive-
supportive cycle; e.g., Alexander, 1973). The two
options are depicted in Figure 3. The top half of the
figure shows an influence function that remains con-
stant once there is an effect (either positive or nega-
tive), and the bottom half shows an influence func-
tion in which the more positive the previous
behavior, the more positive the effect on the spouse,
and the more negative the behavior, the more nega-
tive the effect on the spouse.

We began with a sequence of RCISS scores: W,,
Hp Wt+1, Ht+1, ... etc. In the process of modeling,
two parameters are obtained for each spouse. One
parameter is their emotional inertia (positive or neg-
ative), which is their tendency of remaining in the
same state for a period of time, and the other is their
natural uninfluenced set point, which is their average
level of positive minus negative scores when their
spouse's score was zero, that is, equally positive and
negative.5 For purposes of estimation, we assumed
that zero scores had no influence on the partner's
subsequent score. Having estimated these parameters
from a subset of the data, we then subtracted the
uninfluenced effects from the entire time series to
reveal the influence function, which summarizes the
partner's influence. An additional parameter that
emerged from our modeling was the influenced set
point of the interaction, which is a steady state, or a
sequence of two scores (one for each partner) that

5 This uninfluenced set point need not be viewed as
an individual variable, such as the person's mood or
temperament. It could be thought of as the cumulated
effect of both the marriage up to the time of obser-
vation as well as any propensities this individual has
to act positively or negatively at this time. Thus, if a
second interaction is observed (particularly following
an intervention), it might be of some interest to
attempt to predict changes in this parameter over
time. It might be also of interest to determine the
stability of a person's uninfluenced set point across
other relationships, for example comparing marital,
parent-child, or friendship interactions.
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Figure 3. Two possible functional forms for the
influence functions. For the influence function of the
husband on the wife, the *-axis is the husband's
previous score, H,, and the y-axis is the influenced
component, IHW(Ht+1), of the wife's following score,
Wt+1. The wife's influence on the husband,
Iwf/W,+1), could be graphed in a similar way. In Part
a, there is no influence unless the partner's previous
score lies outside some range. Outside that range the
influence takes either a fixed positive value or a fixed
negative value. In Part b, influence increases linearly
with the value of the previous score, but negative
scores can have either a stronger or less strong influ-
ence than positive scores. In both graphs, a score of
zero has zero influence on the partner's next score
(one of the assumptions of the model).

would be repeated ad infinitum if the theoretical
model exactly described the time series. If such a
steady state is stable, then sequences of scores will
approach the point over time. In a loose sense, the
steady state represents the average score the theoret-
ical model would predict for each partner. We
thought it might be interesting to examine whether
the influenced set point was more positive than the
uninfluenced set point—that is, did the marital inter-
action pull the individual in a more positive or a more
negative direction?

We tested the validity of the two parameters esti-
mated for each spouse in each couple by correlating
these parameters with the dissolution cascade vari-

ables, the behavioral observation scales of the MICS
and the RCISS, and our positive affect indices
(laughter and Duchenne smiles).

Model-Building Strategy

Our model-building strategy follows the philoso-
phy of Murray (1989). In the book Mathematical
Biology, Murray constructed fairly simple nonlinear
models for complex biological problems. The strat-
egy of model construction is first to propose equa-
tions that are good, but simple, representations of the
underlying biology. Subsequently, the models and
their qualitative solutions are extended by other fac-
tors. Hence, we too began simply by modeling mar-
ital interaction. We expect to extend out equations by
suggesting later that some of our parameters may not
actually be fixed constants, but may vary with other
variables in the experiment.

The Model

The model presented in this article attempts to
reproduce the sequence of RCISS speaker scores. For
the present, we confined ourselves to a deterministic
model, regarding any score as being determined only
by the most recent two scores. In this way, we used
a discrete model to describe the individual's level of
positivity in each turn at speech. That is, we sought to
understand interactions as if individual behavior were
based purely on predefined reactions to (and inter-
pretations of) recent actions (one's own and one's
partner's). This scenario may not be true in the main,
but it may be true enough that the results of the model
would then suggest underlying patterns that affect the
way any particular couple interacts when trying to
resolve conflict.6 In the next section, the details of the
model are described, and in the following section, the
methods for estimation of model parameters are de-
scribed. In the subsequent section, the mathematical
and the experimental results are presented.

Description of the model. The assumption that
each person's score is determined solely by each
person's own and the partner's previous score re-
stricted us to a particular class of mathematical
models. If we denote W, and H, as the husband's
and wife's scores, respectively, at turn t, then the

6 The form of the model is in marked contrast to
game theory models, in which there is a presumed
matrix of rewards and costs and a goal of optimizing
some value. We posit no explicit optimization or
individual goal. Each individual simply has a natural
state of positivity or negativity and an inertia (related
to how quickly displacements from the natural state
are damped out), on top of which the partner's influ-
ences and random factors act. We do not introduce
the concept of a "strategy."
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sequence of scores is given by an alternating pair of
coupled difference equations:

Wl+1=f(Wt,H,)

Ht+1=g(W,+ l,Ht).
(1)

The functions / and g remain to be determined. The
asymmetry in the indices is due to the fact that we
assumed, without loss of generality, that the wife
speaks first. We therefore labeled the turns of speech
W1; Hl7 W2, H2, . . . . To select a reasonable/and g,
we made some simplifying assumptions. First, we
assumed that the past two scores contribute sepa-
rately and that the effects can be added together.
Hence, a person's score is regarded as the sum of two
components, one of which depends on each person's
previous score only and the other of which depends
on the score for the partner's last turn of speech. We
termed these the uninfluenced and the influenced
components, respectively. Consider the uninfluenced
component of behavior first. This is the behavior one
would exhibit if not influenced by one's partner. It
could primarily be a function of the individual, rather
than the couple, or it could be a cumulative effect of
previous interactions, or both. It seems reasonable to
assume that some people tend to be more negative
when left to themselves while others would naturally
be more positive in the same situation. We termed
this baseline temperament as the individual's unin-
fluenced set point. We supposed that individuals
would eventually approach that set point after some
time regardless of how happy or how sad they were
made by a previous interaction. The simplest way to
model the sequence of uninfluenced scores is to
assume that uninfluenced behavior can be modeled
by a simple linear relationship. This led us to the
linear relationship

-a-., (2)

where P, is the score at turn t, r; determines the rate
at which the individual returns to the uninfluenced set
point, and aj is a constant. The constant r{ henceforth
is referred to as inertia. The uninfluenced set point is
the steady state of this equation and is found by
solving Pr+i= P, = P = a;/(l - rs). The behavior of
this difference equation is governed by the value of Tt.
If the absolute value of ^ is less than one, then the
system will tend toward the steady state regardless of
the initial conditions, whereas if the absolute value of
r; is greater than one, the system will always evolve
away from a steady state.

Clearly, the natural state needs to be stable, so we
were only interested in the case in which the absolute
value of rs was less than one. The magnitude of r;
determines how quickly the uninfluenced state is
reached from some other state or how easily people
change their frame of mind, hence the use of the word
inertia. For selecting the form of the influenced com-

ponent of behavior, various approaches can be taken.
The influence function is a plot of one person's
behavior at turn t on the x-axis and the subsequent
turn t + 1 behavior of the spouse on the j-axis.
Averages are plotted across the whole interaction.
The first approach is to write down a theoretical form
for these influence functions (recall Figure 3). For
example, we can posit a two-slope function: Two
straight lines go through the origin with two different
slopes, one for the positive range and one for the
negative range. Another possible function that made
sense to us was sigmoidal, or S shaped. In this
function, again around zero on the x-axis, there is no
influence; there is an influence only after some
threshold in positivity is passed, and then the influ-
ence is positive and constant throughout the positive
ranges. Similarly, as a threshold in negativity is
passed, the influence is negative and then constant
throughout the negative range. Note that other forms
of the influence function are also reasonable. For
example, an investigator could combine the two func-
tions and have a threshold and two slopes: We simply
assumed that there were slopes for negative and
positive influences only after the thresholds are ex-
ceeded. How are researchers to be guided in the
choice of a theoretical influence function? We sug-
gest beginning very simply, with a function that
requires very few parameters. The model can be
made more complex later, once this complexity is
shown to be necessary. In this article, we discuss both
the two-slope and the sigmoidal functions.

An alternative approach to the selection of influ-
ence functions is to make no attempt to predetermine
the form of the function. We did not follow this
approach. Instead, we expected the influence func-
tions to vary from person to person, and we decided
that one of the aims of our model building at this
stage in the research was to uncover the shape of the
influence function from the data. Hence, we decided
on this approach. In the first study in which we are
building the mathematical model, we proceeded en-
tirely empirically. However, we use the data to reveal
the influence functions. We will summarize these
results using the two-slope form of the influence
function. This means that the goal of our mathemat-
ical modeling at this point is to generate theory. We
denote the influence functions by IAB (A,), or the
influence of person A's state at turn t on person B's
state. With these assumptions the complete model is

(3)

(4)

Again, the asymmetry in the indices is due to the fact
that we are assuming that the wife speaks first. The
problem now facing us is estimation of our four
parameters (r1; a, r2, and b) and the empirical deter-
mination of the two unknown influence functions.
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Estimation of parameters and the unknown influ-
ence functions. To isolate and estimate the uninflu-
enced behavior, we looked only at pairs of scores for
one person for which the intervening score of the
partner was zero (about 15% of the data). Since, by
assumption, IHW = 0 and IWH = 0, Equations 3 and
4 collapse to Equation 2, and we can use least squares
on this subset of the data to estimate the two un-
known constants for each person. Note that we can
now compute the uninfluenced states and inertia of
each partner.7

Once we have estimated the uninfluenced compo-
nent of the scores, we can subtract it from the scores
at turn t + 1 to find the observed influenced compo-
nent. We can, for example, plot the influenced com-
ponent of the wife's score against her husband's
previous score. For each value of the husband's score
during the conversation, there is likely to be a range
of observed values of the influence component that is
due to noise in the data. To convert these into esti-
mates for the influence functions of the model (IHW

and IWH), we simply averaged the observations for
each partner score. Both the raw influence data and
the averaged influence function can be plotted for
each member of each couple.

To validate the estimation process, we then formed
a reconstructed conversation from the model equa-
tions. We started by simply taking both people to be
at their uninfluenced state (noninteger values are
allowed in this reconstruction) and then iterated for-
ward for the approximately 80 turns of speech each
we tended to observe in 15 min. This was done by
computing the components separately and then sum-
ming to generate the next score. The uninfluenced
component was derived from the use of Equation 2.
The influenced behavior was computed by simply
rounding the partner's last score to the nearest integer
and reading off the influence from that person's
average influence function, referred to above. The
reconstructed conversation, therefore, lacks any ran-
domness. We do not pretend that this "expected"
conversation would ever be observed in practice.
Rather, it represents an underlying trend.

Steady states and stability. For each couple, we
plotted a phase plane containing the model's null
clines. The phase plane refers to the plane with the
husband's and the wife's scores as coordinates.
Hence, a point in this plane is a pair representing the
husband's and the wife's scores for a particular in-
teract (a two-turn unit). As time progresses, this point
moves and charts a trajectory in phase space. In phase
space there are sometimes points called stable steady
states, which are points that the trajectories are drawn
toward. If the system is perturbed away from these
states, it will be drawn back. Unstable steady states
are the opposite: If perturbed, the system will drift
away from these points. Hence, it is of considerable
importance to find the steady states of the phase
plane. This procedure is accomplished mathemati-

cally by plotting the null clines. Null clines involve a
search for steady states in the phase plane; they are
theoretical curves where things stay the same over
time. A person's null cline is a function of the part-
ner's last score and gives the value of that person's
own score when this is unchanged over one iteration,
or W(t + 1) = W(t). This last equation says that
things stay the same over time, and that is precisely
how we find the shapes of the null clines. Plotting
null clines provides a graphical means of determining
steady states. Simple algebra gives the form of these
null clines as

W(Ht) =

H(W, + 1) = [IWH(Wt + - r2).
(5)

Notice that these equations are simply the influ-
ence functions, scaled (by 1 — rt or 1 — r2) and
translated (by a or b). In other words, the null clines
have the same shape as the influence functions, they
are moved over (translated) by a constant, and they
are scaled by another constant. Null clines often play
an important role in mathematical analysis since they
give a visual indication of the dynamics of the sys-
tem. Equilibria or steady states are determined by
looking for intersections of the null clines, since, by
definition, if the system started at this point, then it
would stay there. Of course, the stability of these
steady states to perturbations is yet to be determined.
Because we have not specified the functional form of
the influence functions, we can only proceed quali-
tatively. However, it is instructive to discuss what
would happen if we had settled on a functional form
for the influence functions (which we will do in
subsequent studies as we develop the model). For
example, suppose we assume the sigmoidal S-shaped
form. This assumption is reasonable because it pre-
sumes two thresholds of influence, and that the in-
fluence is bounded in both negative and positive
ranges. The pair of equations (Equation 5) can be
solved graphically. The method is identical to solving
two simultaneous linear equations (ax + by = c;
dx + ey = f). If these two lines are plotted on the
same graph, the point at which they intersect gives
the solution value (x,y) that satisfies both equations.

7 Note that if these zero points were rare, it would
be hard to obtain accurate estimates for the model
parameters as the confidence intervals around these
parameters would be large. Although it seems like a
strong assumption, the assumption that zero scores
have zero influence is arbitrary. We could have as-
sumed nonzero influences, made these additional pa-
rameters, and estimated these parameters as well. In
fact, an asymmetry in these parameters would be
theoretically interesting in characterizing a couple's
interaction. In the interest of parsimony, we picked
zero for these parameters.
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Therefore, if we plot the two curves from Equation 5,
their solution is given by any points where the curves
intersect. Call one of the partners A. Under what
conditions will two consecutive scores for A be iden-
tical? For any particular score for A, there is only one
intervening score for A's partner that allows this.
Thus, the map from A's score to the partner's score
that leaves it unaltered defines a function. This is
what we have called A's null dine.

A's partner has a null cline that can be computed in
a similar way. We plotted the wife's and husband's
null clines against their corresponding axes in Figure
4. This plot represents two functions: The value of W,
for which W, + , = W, for any given intervening Hr

and the converse for the husband. Intersection points
are, by definition, points for which both the wife's
and the husband's scores remain constant on consec-
utive turns of speech. We call these points the influ-
enced steady states. If a couple were to reach one of
these states during a conversation, they would theo-
retically remain there with each partner scoring the
same on each of their future turns of speech. If they

were perturbed away from one of these stable steady
states, they would be drawn back to it. These poten-
tial flow lines can be used to map potential trajecto-
ries, or solutions to the equations in phase space.
Although there may be many influenced steady states
(depending on the influence functions and the unin-
fluenced parameters), in practice we have usually
found only one.

There are actually two types of steady states, stable
and unstable. If a theoretical conversation were con-
tinued for some time, then pairs of scores would
approach a stable steady state and move away from
an unstable one. We call the set of points that ap-
proach a stable steady state (we ignore the possibility
of cycles) the basin of attraction for that steady state.
An example of a sequence of scores is shown in
Figure 5 approaching the more positive steady state.
This theoretical conversation would be constructed
by simply applying Equations 3 and 4 iteratively
from some initial pair of scores. The potential exis-
tence of multiple stable steady states each with its
own basin of attraction has practical implications.

H null-clines

Figure 4. The use of null clines to graphically determine the steady states. The husband's null cline
is a function of the wife's previous score. For a particular value of the wife's (W) score, Wt+1, the
value of the husband's null cline is the value of the husband's (H) score that would remain
unchanged over one iteration (Ht = H,+1) when the wife's intervening score was Wr+1. The wife's
null cline is defined in a similar way. The null clines have the same general shape as the influence
function (see Equation 5) but are stretched and translated. When the null clines are plotted against
their respective axes, the steady states of the system are the points of intersection. The intersection
of the two null clines shows that five stability points (one, three, or five stability points) are possible
with this sigmoid form of the influence function; note that the influence functions are plotted in a
mirror-image relationship. The example shown has five stability points. Notice that the stable steady
states (filled circles) alternate with unstable steady states.
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The model suggests that the final outcome (positive
or negative trend) of a conversation could depend
critically on the opening scores of each partner.
Where one begins in the phase space is determined
by the couple's actual initial conditions. We have
generally found that the end points can depend crit-
ically on starting values.8 An observed or a "recon-
structed" conversation can be represented in the
phase plane as a series of connected points. In ad-
dressing the issue of stability of the steady states, we
are asking whether the mathematical equations imply
that the reconstructed series will approach a given
steady state. Analytically, we ask the question of
where a steady state will move once it is slightly
perturbed from its position. The theoretical (stable or
unstable) behavior of the model in response to per-
turbations of the steady states is only possible once
we assume a functional form for the influence func-
tions. For example, as we have noted, for the sigmoi-
dal influence function, we can have one, three, or five
steady states (see Figure 4). From the null cline plot
(see Figure 4), we can see that there are three stable
and two unstable states.

What does it mean for there to be multiple steady
states? These states are all possible for a particular
couple. Even if we only observe the couple near one
of the steady states in our study, all are possible for
this couple, given the equations. Each stable steady
state will have a basin of attraction, which is the set
of starting points from which a reconstructed time
series will approach the steady state in question. If
there is a single steady state, then its basin of attrac-
tion is the whole plane—that is, no matter what the
initial scores were, the sequence would approach this
one steady state. We have found this tendency toward
a single steady state to be the usual situation in our
data. If, on the other hand, there are two stable steady
states (and, necessarily, one unstable one), generally
the plane will be divided into two regions (the basins
of attraction; see Figure 5). If the scores start in the
first stable steady state's basin of attraction, then, in
time, the sequence of scores will approach that steady
state. The same goes for the second steady state and
its basin of attraction. This situation is depicted in
Figure 5. The couple begins at the point (W^HJ in
phase space, next moves to the point (W2,H2), and
next moves to the point (W3,H3), and so forth head-
ing for the large black dot that represents the stable
steady state intersection of the two null clines. Notice
that this movement implies that the eventual trend
which the conversation follows can be highly depen-
dent on the initial conditions. Thus, high inertia, high
influence couples (who are more likely to have mul-
tiple steady states) could potentially exhibit a positive
conversation on one day and yet not be able to
resolve conflict on another. The only difference could
be the way the conversation began (their initial
RCISS scores). The influence functions and uninflu-
enced parameters would be identical on each day.

This discussion makes concrete the general systems
theory notion of first-order (or more superficial, sur-
face structure) change and second-order (or more
meaningful, deeper structure) change. In our model,
first-order change means that the steady states may
change but not the influence functions; second-order
change implies a change in the influence functions as
well.

Results

Influence Functions

Notice that influence functions are arbitrarily
attributed to the influencer, although we recog-
nize that the influenced spouse also plays a part
in determining the influence. As a rough ap-
proximation to the shape of the influence func-
tions, obtained from the data by least squares,
we used the two-slope function and computed
the slope of the influence function separately for
negative and positive value of the partner's be-
havior. The x-axis represented the range of pos-
itivity or negativity in each group. Only data
close to the natural set point for each group
could be trusted to avoid infrequent numbers of
instances of RCISS values within a group. Note
that this means that we get more reliable infor-
mation for regulated couples in the positive
ranges and for nonregulated couples in the neg-
ative ranges of the x-axis. Figure 6 is a summary
of the empirically obtained functions for five
groups of couples, the three stable marriages
(volatile, validating, and avoiding) and the two
unstable marriages (hostile and hostile-de-
tached). For heuristic purposes, we used the
two-slope model of the influence function. The
top three rows of graphs represent the influence

8 Notwithstanding what has been termed the punc-
tuation fallacy, in which where one starts in an in-
teraction is quite arbitrary, we have found that the
couple's starting values of the interaction appear to
be very important in determining the couple's even-
tual trajectory. We have considered modifying the
influence functions to include a repair component,
whose existence would be capable of moving a cou-
ple from a negative to a positive steady state. If there
were a repair component operating, the cumulative
graph could look like a check mark, starting down-
ward and then changing direction. Unfortunately, this
occurred in our data for only 4% of the cases. Perhaps
effective marital therapy might add such a repair
component to the influence functions.
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curve separating two ^^" \
basins of attraction

Figure 5. Null clines and the sequence of theoretical Rapid Couples Interaction Scoring System
(RCISS) scores in the case of three steady states. Two stable steady states (large filled circles) are
separated by an unstable steady state (large open circle). A possible sequence of scores is shown
approaching the positive steady state (small filled circles). Each point corresponds to a consecutive
pair of scores (Wrff,). Both stable steady states have a basin of attraction consisting of points starting
from which a sequence of theoretical RCISS scores will approach the steady state in question. The
curve separating the basins of attraction is shown as a straight line. Pairs of scores gradually
approach one of the stable states: The long-term behavior of the sequence is therefore dependent on
the basin of attraction in which the initial pair of scores lies. H = Husband; W = Wife; subscript
t = time.

functions for the three regulated marriages. The
validators have an influence function that cre-
ates an influence toward negativity in a spouse
if the partner's behavior is negative, and an
influence toward positivity if the partner's be-
havior is positive. Volatile and conflict-avoider
influence functions appear to be, respectively,
one half of the validators', with volatiles having
the right half of the curve with a slope close to
zero and the conflict avoiders having the left
half with a slope near zero. This observation of
matching functions is summarized in the third
column, labeled theoretical influence function.
Now examine the influence functions for the
hostile and the hostile-detached couples. It
looks as if these data would support a mismatch
hypothesis. Hostile couples appear to have
mixed a validator husband influence function
with a conflict-avoider wife influence function,
and hostile-detached couples appear to have
mixed a husband validator influence function
with a volatile wife influence function.

From examining the data, we propose that
validating couples were able to influence their
spouses with either positive or negative behav-

ior; positive behavior had a positive sloping
influence, while negative behavior also had a
positive sloping influence. This result means
that the negative x-axis values had a negative
influence, whereas the positive x-axis values
had a positive influence. For validators, across
the whole range of RCISS point values, the
slope of the influence function was a constant,
upwardly sloping straight line. The data might
have been generated by the process that in val-
idating regulated marriages there is a uniform
slope of the influence function across both pos-
itive and negative values: Overall negative be-
havior has a negative influence, whereas posi-
tive behavior has a positive influence in
regulated marriages. Here we see that a full
range of emotional balance is possible in the
interaction. However, conflict-avoiding and
volatile couples were nearly opposite in the
shape of their influence functions. Avoiders in-
fluenced one another only with positivity (the
slope was flat in the negative RCISS point rang-
es), whereas volatile couples influenced one
another primarily with negativity (the slope was
flat in the positive RCISS point ranges). The
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THEORETICAL INFLUENCE FUNCTION
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Figure 6. Empirically obtained influence functions using the two-slope functional form.
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influence function of the avoiding couple is
nearly the reverse of that of the volatile couple.

Mismatch Theory: The Possibility That
Unstable Marriages Are the Results of
Failed Attempts at Creating a Pure Type

The shape of the influence curves leads us to
propose that the data on marital stability and
instability can be organized by the rather simple
hypothesis that hostile and hostile-detached
couples simply fail to create a stable adaptation
to marriage that is either volatile, validating, or
avoiding. In other words, the hypothesis is that
the longitudinal marital stability results are an
artifact of the prior inability of the couple to
accommodate to one another and have one of
the three types of marriage. For example, in the
unstable marriage, a person who is more suited
to a volatile or a conflict-avoiding marriage may
have married one who wishes a validating
marriage. Their influence functions are simply
mismatched.

Unfortunately, it is easier to propose this hy-
pothesis than it is to test it. The problem in
testing this hypothesis is that the marital inter-
action is a means for classifying couples. The
result of this classification process is that the
marriage is described as volatile, validating, or
avoiding, rather than describing each person's
style or preferences. What is needed to test this
hypothesis is an independent method for classi-
fying each person's conflict resolution style. To
begin to test this hypothesis, we computed the
difference between husbands and wives on the
RCISS positive and negative speaker codes. If
the mismatch hypothesis was true, one would
expect that the results of an analysis of variance
between the groups would show greater discrep-
ancies between husbands and wives for the hos-
tile and the hostile-detached groups than for
three stable groups. This was indeed the case.
By pooling the stable groups into one group and
the unstable groups into another group, we ob-
tained the following results: for the positive
speaker code, F(l, 70) = 4.12, p < .05 (sta-
ble = - . 0 1 , unstable = .08); for the negative
speaker code, F(l, 70) = 10.42, p < .01 (sta-
ble = - .02, unstable = -.26); and for the
difference between positive and negative
speaker codes, F(l, 70) = 8.57, p < .01 (sta-
ble = .01, unstable = .34). Thus, it could be the
case that the unstable groups are examples of

discrepancies in interactional style between
husbands and wives that reflect their differences
in preferred type of marital adaptation, or these
differences may have emerged over time as a
function of dissatisfaction.9

This analysis is incomplete without a discus-
sion of the other parameters of our model for
these five groups of couples, namely, inertia and
influenced and uninfluenced set points. Note
that we present no statistical tests here. Our
purpose is the qualitative description of the data
for generating theory. By theory we mean a
suggested mechanism for the Gottman-Leven-
son prediction of marital instability.

Set Points and Inertia

The results in Table 1 summarize the mean
set points and inertias for the types of couples.
Let us begin by examining the inertia parame-
ter. Nonregulated couples have higher mean
emotional inertia than regulated couples; the
differences are greater for wives than for hus-
bands (a fourfold difference; .29 vs. .07, respec-
tively). Wives in nonregulated marriages have
greater emotional inertia than do husbands, but
this is not the case in regulated marriages. Both
the influenced and the uninfluenced set points
are more negative in nonregulated marriages
compared with regulated marriages, and this
result is especially true for wives (although we
note again that the influenced set point is an
attribute of the couple, not the individual). The
three stable types of couples also differed from
each other. Volatile couples had the highest set
points, followed by validators and then avoid-
ers. Also, the effect of influence in nonregulated
marriages is to make the set point more nega-
tive, whereas, in general, the reverse is true in

9 Note that this match-mismatch idea is not the
same as Watzlawick, Beavin, and Jackson's (1967, p.
67) notion of symmetry versus complimentarity, by
which they meant interactional mirroring (as in as-
sertive-assertive) versus one partner complimenting
the other (as in assertive-submissive). We would
expect, on the basis of the typology reported in Gott-
man (1994), that couples in which the influence func-
tions are mismatched would differ greatly in their
desired levels of emotional distance and closeness
and have influence patterns that leave one person
feeling overwhelmed and flooded while the other
partner feels lonely. Gottman's typology is based
extensively on the nature of influence patterns and
their concomitants.
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Table 1
Parameter Estimates in the Mathematical Modeling of the RCISS
Unaccumulated Point Graphs

Husband set points Wife set points

Type

Volatile
Validating
Avoiding

M

Hostile
Hostile-detached

M

Inertia

.33

.37

.18

.29

.32

.40

.36

Uninfluenced Influenced

Regulated couples
.68
.38
.26

.44

.75

.56

.53

.61

Nonregulated couples
.10

- .42

- .16

.03
- .50

- .24

Inertia

.20

.14

.25

.20

.51

.46

.49

Uninfluenced

.68

.52

.46

.55

- .64
- .24

- .44

Influenced

.61

.59

.60

.60

- .45
- .62

- .54

Note. RCISS = Rapid Couples Interaction Scoring System.

regulated marriages. Perhaps it is the case that
volatile couples need to have a very high set
point to offset the fact that they influence one
another primarily in the negative range of their
interaction. The behavior of the wives was quite
different than that of the husbands. Wives in
regulated marriages had a set point that was
equal to or more positive than husbands'. How-
ever, wives in hostile marriages had a set point
that was more negative than their husbands',
whereas the reverse was true in hostile-de-
tached marriages. The set points of wives in
nonregulated marriages were negative and were
more negative than the set points of wives in
regulated marriages. Wives in hostile marriages
had a more negative set point than did wives in
hostile—detached marriages.

Validity of the Parameters

The results in Table 2 summarize the corre-
lations of the parameters of our model between
the regulated—nonregulated classification, the
variables of the dissolution cascade, physical
health at Time 2, the summary behavior obser-
vation scales of the MICS and the RCISS, and
positive affect.

For predicting marital dissolution, these re-
sults suggest that (a) the regulated-nonregu-
lated classification (which was the Gottman-
Levenson predictor of marital dissolution) was
related to the wives' emotional inertia and to
both the husbands' and the wives' uninfluenced
set points, and (b) the emotional inertia param-

eters are unrelated to the dissolution cascade
variables, but both the husbands' and the wives'
uninfluenced set points are related to the disso-
lution cascade variables. Both the husbands'
and the wives' set points are significantly pre-
dictive of divorce.

For future research, we would like to know to
what extent uninfluenced set points are inde-
pendent of partner or independent of conversa-
tion—that is, to what extent are they intrinsic to
the individual and to what extent do they de-
scribe a cumulative quality of the relationship?

Emotional inertia. In relation to marital in-
teraction, for the MICS codes, the husbands'
inertia was related to their criticism, whereas
the wives' inertia was related to the husbands'
withdrawal and to the wives' own contempt.
For the RCISS codes, the husbands' inertia was
related to their contempt, and the wives' inertia
was related to all of the subscales of the RCISS.

Set points. For the MICS coding, the hus-
bands' set point variable was related to their
criticism, contempt, and withdrawal and to the
wives' criticism and withdrawal; for the MICS
coding, the wives' set point variable was related
to all of the variables for both spouses. For the
RCISS coding, the husbands' set point was re-
lated to all of their behavior and to all of the
wives' behavior except for criticism; the wives'
set point was related to all of the husbands'
codes except for criticism and to all of the
wives' codes.

Positive affect. We observed the following
relationships. Wives with more emotional iner-
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Table 2
Correlations of Model Parameters With Dissolution Cascade and Behavioral
Observation Variables

Variable

Marital satisfaction (Time 1)
H
W

Marital satisfaction (Time 2)
H
W

Thoughts of dissolution
H considers divorce
H considers separation
H health (Time 2)

Thoughts of dissolution
W considers divorce
W considers separation
W health (Time 2)

Dissolution
Separation
Divorce

Marital type

MICS Codes
H criticism
H defensive
H contempt
H withdrawn
W criticism
W defensive
W contempt
W withdrawn

RCISS Codes
H criticism
H defensive
H contempt
H withdrawn
W criticism
W defensive
W contempt
W withdrawn

H laughter
W laughter
H smiling
W smiling

Husband
inertia

Dissolution

.05
- . 2 3

- . 0 2
.00

.02

.10
- . 0 5

.00

.02
- . 1 6

- . 0 7
.05

- . 0 4

Wife
inertia

cascade

- . 0 8
- . 0 7

- . 2 1
- . 2 1

.06

.06

.01

.24

.24

.21

.01

.22
- . 5 4 * * *

Marital interaction behavior

.37**

.11

.01

.14

.11

.09
- . 0 1

.19

.18

.09

.26*
- . 0 6
- . 0 4

.12

.18
- . 0 8

.21

.07

.31*

.50**

.19

.21

.36**

.19

.25*

.52***

.33**

.38**

.45**

.55***

.45***

.31**

Positive affect

- . 1 5
- . 0 8
- . 0 1
- . 0 3

- . 1 5
- . 1 8
- . 2 3
- . 3 2 *

Husband
set point

.25

.36*

.31*

.26*

- . 2 8 *
- . 3 4 * *
- . 3 1 *

- . 2 0
- . 2 2

.14

- . 1 1
—- 32*

'40***

- . 3 0 *
- . 2 2
- . 3 8 * *
- . 4 6 * * *
- . 2 5 *
- . 0 5
- . 1 5
- . 3 0 *

- . 4 9 * * *
- . 4 7 * * *
- . 7 4 * * *
- . 5 2 * * *
- . 2 3
- . 3 0 *
- . 6 4 * * *
- . 4 2 * * *

.40***

.32**

.22

.26*

Wife
set point

.26*

.28*

.27*

.20

- . 2 2
- . 1 9
- . 1 2

- . 2 8 *
- . 2 8 *
- . 3 1 *

- . 3 8 * *
- . 4 2 * * *

.54***

- . 2 7 *
- . 2 8 *
- . 3 1 *
- . 6 1 * * *
- . 2 7 *
- . 3 8 * *
- . 3 0 *
- . 3 0 *

- . 2 4
- . 4 6 *
- . 5 0 *
- . 5 5 *
- . 6 3 *
- . 4 1 * '
- . 6 3 * '

l=*

!=*

K*

| e *

f=*

f t*

- . 4 7 * * *

.13

.28*

.09

.35**

Note. H = husband; W = wife; MICS = Marital Interaction Coding System; RCISS = Rapid
Couples Interaction Scoring System.

tia made fewer Duchenne smiles than did wives
with less emotional inertia. Husband and wife
set points were related to fewer Duchenne
smiles, but only for wives. On the RCISS, hus-
bands with higher set points laughed more,
whereas wives laughed more when either the
husband's or the wife's set point was higher.

Discussion

The purpose of the dynamic mathematical
modeling proposed in this article was to gener-
ate theory that might explain the ability of the
RCISS point graphs to predict the longitudinal
course of marriages. We found that the uninflu-
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enced set point, when group averaged, was
enough to accomplish this task. This alone is an
interesting result. Subsequent attempts at theory
construction may profit from making this pa-
rameter a function of other dynamic (time vary-
ing) variables in the experiment, such as indices
of physiological activity. Perhaps the uninflu-
enced set point represents a cumulative sum-
mary of the marriage and reflects what each
individual brings to each marital conflict dis-
cussion. It might be useful to study what other
variables (e.g., stress, coping, and power differ-
ences) are related to this index.

Gottman (1994), on the basis of Time 1 in-
teractive behavior on the ROSS, described
three distinct types of couples who were more
likely to have stable marriages and two groups
of couples who were more likely to have unsta-
ble marriages. In this article, we examined the
influence functions for these five groups of cou-
ples and suggested that the influence functions
might provide insight into the classification.
Validating couples seemed to have a pattern of
linear influence over the whole range of their
interaction: When they were more negative than
positive, they had a negative impact on their
partner's subsequent behavior, and, conversely,
when they were more positive than negative,
they had a positive impact on their partner's
behavior. Conflict-avoiding couples, on the
other hand, resembled validating couples, but
only in the positive ranges of their behavior. In
the negative ranges, they had nearly no influ-
ence on their spouses. Volatile couples resem-
bled couples headed for marital dissolution in
that they had no influence in the positive ranges
of their partner's behavior. They differed from
this group of couples only in having a more
positive uninfluenced set point.

These results provide insight into the poten-
tial costs and benefits of each type of stable
marriage. The volatile marriage is clearly a
high-risk style. Without a high level of positiv-
ity, volatile couples may drift to the interactive
style of a couple headed for dissolution. The
ability to influence one another only in the
negative ranges of behavior may suggest a high
level of emphasis on change, influence, and
conflict in this type of marriage. On the other
hand, the conflict-avoiding style seems partic-
ularly designed for stability without change and
conflict. The validating style seems to combine
elements of both styles, with an ability to in-
fluence one another across the entire range of

interactive behavior. On the other hand, the
marriages headed for dissolution had influence
functions that were mismatched. In the hostile
marriage, the husband, as with a validating
husband, influenced his wife in both the posi-
tive and the negative ranges but she, as with a
conflict avoider, only influenced him by being
positive. If we can generalize from validator
and avoiding marriages, the wife is likely to
seem quite aloof and detached to the husband,
whereas he is likely to seem quite negative and
excessively conflictual to her. In the hostile-
detached marriage, we found another kind of
mismatch. The husband, again as with a vali-
dating husband, influenced his wife in both the
positive and the negative ranges, but she, as
with a wife in a volatile marriage, only influ-
enced him by being negative. If we can gener-
alize from validator and volatile marriages, the
husband is likely to seem quite aloof and de-
tached to the wife, whereas she is likely to seem
quite negative and excessively conflictual to
him. These two kinds of mismatches are likely
to represent the probable mismatches that
might survive courtship. We did not find a
volatile style and a conflict-avoiding style
within a couple in our data; perhaps they are
just too different for the relationship to survive,
even temporarily. These results suggest evi-
dence for a mismatch of influence styles in the
marriage being predictive of marital instability.
This result is interesting in light of the general
failure or weak predictability of mismatches in
personality or areas of agreement in predicting
dissolution (Bentler & Newcomb, 1978; Fow-
ers & Olson, 1986), and it suggests that a study
of process may be more profitable in under-
standing marriage than a study of individual
characteristics.

Let us consider what one gains from our ap-
proach. As soon as we write down the determin-
istic model, we already gain a great deal. Instead
of empirical curves that predict marital stability
or dissolution, we now have a set of concepts
that could potentially explain the prediction. We
have parameters of uninfluenced set point, in-
fluenced set point, emotional inertia, and the
influence functions. We have gained a language,
one that is precise and mathematical for talking
about the point graphs. Marriages that last have
more positive uninfluenced set points. Further-
more, interaction usually moves the uninflu-
enced set points in a more positive direction,
except for the case of the volatile marriage, in
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which the only way anyone influences anyone
else is by being negative—in that case a great
deal of positivity is needed to offset this type of
influence function. Marriages that last have less
emotional inertia, they are more flexible and less
predictable, and the people in them are more
easily moved by their partners. Depending on
the type of marriage the couple has, the nature of
their influence on one another is given by the
shape of the influence functions. We hypothe-
size that couples headed for divorce have not yet
worked out a common influence pattern and that
most of their arguments are about differences in
how to argue, about differences in how to ex-
press emotion, and about differences in issues
concerning closeness and distance; all of these
differences are entailed by mismatches in influ-
ence functions (see Gottman, 1994). Of course,
we have no way of knowing from our data
whether the mismatches in influence functions
were present at the start of the marriage or
whether they emerged over time. We are cur-
rently studying these processes among newly-
weds as they make the transition to parenthood.

As a new methodology for examining an ex-
perimental effect and building theory, we sub-
mit that the use of these equations is a method
that can help a researcher get at the mechanism
for an observed effect, as opposed to using a
statistical model. A statistical model tells
whether variables are related, but it does not
propose a mechanism for understanding this
relationship. For example, if researchers find
that socioeconomic status is related to divorce
prediction, they will still have no ideas from this
fact how this effect may operate as a mechanism
to explain marital dissolution. The differential-
difference equation model approach is able to
suggest a theoretical and mathematical lan-
guage for such a theory of mechanism. The
mathematical model differs from the statistical
model in presenting an equation linking a par-
ticular husband and wife over time, instead of a
representation of husbands and wives, aggre-
gated across couples as well as time.

The use of the sigmoidal influence function is
the next step in developing the model. To ac-
complish this next step, we need to use an ob-
servational system that provides much more data
than the RCISS. Gottman (1994) found that
the Specific Affect Coding System (SPAFF)
is highly correlated with the RCISS speaker
slopes, and the advantages of the SPAFF are that
the couple's interaction can be coded on-line in

real time, without a transcript, and the data are
summarized second-by-second instead of at
each turn of speech. Thus, the SPAFF will make
it possible to obtain much more data for each
couple. With the sigmoidal influence function,
there is the possibility of five steady states (five
intersection points for the null clines), three of
which are stable (see the Appendix.) The possi-
ble existence of more than one stable steady
state for a given couple can be inferred from
their data once we have written down the model,
which means that we can describe the couple's
behavior even in conditions in which they have
not been observed in our study. Thus, the model
can be used to create simulations of that cou-
ple's interaction that go beyond our data.

By varying parameters slightly, we can even
make predictions of what will happen to this
couple if we could change specific aspects of
their interaction, which is a sort of quantitative
thought experiment of what is possible for this
particular couple. We are currently using this
approach in a series of specific intervention
experiments designed to change a couple's
second interaction about a particular issue.
The model can be derived from the couple's
first interaction in the laboratory, and the in-
tervention can be designed to change a model
parameter (whether it does or not could be
assessed). Coupled with an experimental ap-
proach, we can test whether the mechanism for
change described by the model is accurate by
seeing if the model's predictions of what
would happen when a model parameter
changed is accurate. In this way, the model can
be tested and expanded by an interplay of
modeling and experimentation.

The qualitative assumptions that form the un-
derpinnings of this effort are also laid bare by
the process. For example, the choice of the
shape of the influence functions can be modi-
fied with considerable effect on the model. Fol-
lowing our qualitative approach, subsequent
correlational data can quantitatively test the the-
ory. This can proceed in two ways: (a) the
influence functions can be specified in func-
tional (mathematical or graphical) form, and (b)
the equations themselves can be made progres-
sively more complex, as needed. To date, our
empirical fitting has suggested that the sigmoi-
dal form would best fit the data.

One simple way we suggest changing the
equations is to assume that the parameters are
not fixed constants but, instead, are functions of
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other, more fundamental theoretical variables.
In the Levenson-Gottman paradigm, there are
two central classes of variables we wish to
consider. The first class of variables indexes the
couple's physiology, and the second class of
variables indexes the couple's perception of the
interaction derived from our video-recall proce-
dure. We expect that physiological measures
that are indicative of diffuse physiological
arousal (Gottman, 1990) will be related to less
ability to process information, less ability to
listen, and greater reliance on behaviors that are
more established in the repertoire in upsetting
situations (e.g., fight or flight). Hence, it seems
reasonable to predict that measures indicative of
more diffuse physiological arousal may predict
more emotional inertia. Similarly, we expect
that a negative perception of the interaction
would go along with feeling flooded by the
negative affect (see Gottman, 1993) and nega-
tive attributions (see Fincham, Bradbury, &
Scott, 1990) of one's partner. Hence, it seems
reasonable to predict that variables related to the
video-recall rating dial would predict the unin-
fluenced set point. If individuals have an inter-
action with their spouse that they rate nega-
tively, the next interaction may be characterized
by a slightly less positive uninfluenced set
point. The uninfluenced set point, to some ex-
tent, may index the cumulative effects of the
marital balance of positivity over negativity,
integrated over time. There is also the possibil-
ity that the uninfluenced set point might best be
understood by an integration of personality
traits with marital interaction patterns.

It is interesting to note that the model is, in
some ways, rather grim. Depending on the pa-
rameters, the initial conditions determine the
eventual slope of the cumulated RCISS curves.
Unfortunately, this is essentially true of most of
our data. However, another way the model can
be developed further is to note that a number of
couples began their interaction by starting neg-
atively but then changed the nature of their
interaction to a positively sloping cumulative
RCISS point graph; their cumulative graph
looked somewhat like a check mark. This was
quite rare (characterizing only 4% of the sam-
ple), but it did characterize about 14% of the
couples for at least part of their interaction. This
more optimistic type of curve suggests the need
to add to the model the possibility of repair of
the interaction once it has passed some thresh-
old of negativity. This addition could be incor-

porated by changing the influence function so
that its basic sigmoidal shape had the possibility
of a repair jolt (or perhaps "repair nudge" would
be closer to the data) in the negative parts of the
x-axis of Figure 3. The size of the repair jolts
would add two other parameters to the model,
each of which would have to be estimated from
the data. The jolt would, however, have to be
quite sizable to bring the couple far enough
away from the zero stable steady state and to-
ward the more positive stable steady state. We
might also then inquire as to what the correlates
are of these repair jolts. This process would
suggest some strength in the marriage that could
be explored further.

Finally, the potential precision of the equa-
tions suggests experiments in which only one
parameter is altered and the effect of the exper-
iment is assessed, thus refining the equation and
potentially revealing the structure of the inter-
action itself. Here is how this would work. After
a baseline marital interaction, a standard report
based on the observational data would be used
to compute the parameters of the model and the
influence function. Then, an experiment could
be done that changes one variable presumed to
be related to the model parameters. For exam-
ple, we would have participants either relax and
lower their heart rates or bicycle until their heart
rates increased to 125 beats per minute; then
they would have a second interaction, and the
model parameters would be recomputed. Order
could be counterbalanced. The experiment
could reveal the functional relationship between
heart rate and the inertia parameter. What is
perhaps even more exciting is that the modeling
process leads naturally to design experiments.
We think that this is so because we are model-
ing the mechanism. We are building a theory
and the theory naturally suggests experiments.
Hopefully, the experiments will help build the
theory. This process involves both mathematics
and the laboratory, which is a new approach in
the field of family psychology.

We plan to build this model in subsequent
studies by continuous coding that will provide
more reliable data for each individual couple,
and more of it. These studies will also make it
possible to expand from difference to differen-
tial equations. The time delay (we used a delay
of one time unit in this model) would then
become a parameter for each couple; time de-
lays in differential equations are capable of rep-
resenting cycles. The experiments we are con-
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ducting make simulations and subsequent tests
of the model possible. What would happen, for
example, if we successfully lowered only the
couple's heart rate and thus lowered their emo-
tional inertia? Would other parameters of the
model change? Would the influence functions
change shape? Another development we plan is
to study the newly wed couple's transition to
parenthood and the effects of the marital con-
flict on the developing family. When the baby is
3-months-old, we will attempt to model triadic
interaction with three equations, perhaps esti-
mating key parameters from the dyadic marital
interaction. A system of three nonlinear equa-
tions is capable of modeling many complex
patterns, including chaos.
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Appendix

Linear Stability Analysis

Linear stability analysis is the mathematical tech-
nique used to assess the local stability of steady states
to small perturbations (see Murray, 1989, for exam-
ple). Loosely speaking, we determine whether a
small "perturbation" away from the steady state will
be amplified or damped out over time. A stable
steady state will possess a basin of attraction, which
is defined as those states beginning at which the
system would approach the steady state over succes-
sive iterations.
_Wê  examine the stability of a general steady state,

(W, H), to small perturbations. Let us define

W, = W + w,
(Al)

where wt and h, are small.
Then, using Equation 3 and Equation 4, expanding

in a Taylor series and retaining only linear terms, we
have

wl+1 = w + wl+1 = w i t + ht) + n(w + w,)

+ a
d

+ h, — /„,
'dH "

rx(W + wt) + a.

(A2)

But IHW(R) + a = (1 - rJW by definition of W.
Hence, this equation simplifies to

wl+1 = rj w, + h, —
an

(A3)

Similarly, ht+l = i2h, + w,+ 1 d/dW (7WW[W]), which
on substitution for wt+1 leads to the following pair of
linear difference equations:

dlH

dH

h,

dW ~' \dW I \ dH / J

The stability matrix is therefore

(A4)

M =
dHr i - 1

dW \ dW \ dH
(A5)

with stability requiring Tr(M) < 0 and Det(M) > 0.
These conditions for linear stability reduce to the
following:

d _
— W W )
dW "

* -1— WH)
AH "w
dH

< min (2,1 + (A6)

or

dW

d
— WH)dH Hm J

< min [(1 - n)(l - r2),(l - rj) + (1 - r2)]. (A7)

If the inertia values, r, and r2, are less than one (the
observed values generally are), this equation reduces
to

d _
— WW)
dW

d

dH
- r 2 ) .

(A8)

Thus, to assess stability, we must simply evaluate the
derivatives of the influence functions and use Equa-
tion A7. In general, we can say that steep influence
functions and high inertia (r;) are destabilizing. For
example, if each influence function had a slope
greater than one, then the steady state would be
unstable irrespective of the inertia values. This hy-
pothesis agrees with our intuitive expectations if we
interpret instability as the amplification of small per-
turbations: Influence is a measure of the effect one
partner has on another, so that large (positive)
changes in influence will result in mutual amplifica-
tion or instability. On the other hand, even couples
with relatively flat (low derivative) influence func-
tions can have unstable steady states if either of the
partners' inertia is high (i.e., close to one).

We now examine the special case in which the
inertias, T1 and r2, are less than one but greater than
zero. Then, (1 - r t)(l - r2) < (1 - rt) + (1 - r2),
so that a steady state is stable if and only if

- \ \ d

(A9)

This equation can be interpreted graphically. The null
clines will intersect either as shown in Figure Ala or
Alb. From Equations 3 and 4, the equations for the

{Appendix continues on next page)
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H

H

w W

Figure AL Null clines and the stability of steady
states. Steady states correspond to points at which the
null clines intersect. The stability of a steady state can
be determined graphically (see text for details):
When the null clines intersect as is shown in a, the
steady state is unstable; when they intersect as is
shown in b, the steady state is stable. H = Husband;
W = Wife.

null clines can be written

NHW(H) = [ww) + fl]/(i - n)

(A10)

r^, SO

that the tangent at (W,H), when plotted as in Figure
Ala and Alb, has slope (1 - rJ/d/dH IHJH). Sim-
ilarly, the^angent to the NWH null cline has slope
d « W W W ) / ( l - r2).

If the null clines intersect as shown in Figure Ala,
then clearly

d

]/dH

d

' dW
- r2).

(All)

Together with the assumption concerning the inertia,
this implies

d d
WH) —J > (1 " ri)(l - id,

The derivative of NHW is d/dH

(A12)

and hence by Equation A9 the steady state is
unstable.

If, on the other hand, the null clines intersect as in
Figure Alb, then the inequality is reversed and the
steady state is stable. Thus, under these conditions on
the inertia, we can determine graphically not only the
location of steady states but also their stability.

A simple corollary of this null cline intersection
rule is that stable and unstable steady states must
alternate—that is, any two stable steady states are
separated by an unstable one and vice versa. If it is
assumed that influence functions are monotonic in-
creasing functions, then the steady states can be or-
dered. By this we mean that the steady state values,
W and H, will both increase as we move from one
steady state to the next. If we assume that influence
functions saturate, then highest and lowest steady
state are clearly stable (they must intersect as in
Figure Alb). We can thus categorize the possible
steady states and their stability: There must be an odd
number of steady states that alternate between stable
and unstable, and the first and last are stable.
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