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GorrMmaN, Joun M, and RiNGLAND, James T The Analysis of Domunance and Bidirectionality
wn Social Development CuiLo DeveLopMEenT, 1981, 52, 393412 This paper 1s a reexamination
of 2 concepts that have played a role in the direct observation of social interaction and the
study of social development, namely, the concepts of dominance and bidirectionahty Ths pa-
per argues that a reconceptualization based on the sequental character of social mteraction
would add much theoretical clarity to these 2 concepts In this paper the sequential nature of
social interaction 15 addressed by applying time-senes analysis to redefine (as a function of
social context) the cong]gﬁt of dominance as asymmetry in predictability in the behavior of 2

mteracting individuals

e potential benefits of this redefimtion are then discussed 1n the con-

text of literature on children’s social behavior wath their peers Bidirectionality 1 socal inter-
action, defined as symmetncal predictability n behavior, 1s then discussed m the context of
parent-infant interaction A senous methodological problem 15 then raised, namely, the problem
of autocorrelation m each person’s behavior n making inferences about cross-correlation be-
tween people Mathematical models and corresponding statistical procedures are presented to
solve this dproblem Procedures are discussed that address the concepts of cyclicity within a

person an

synchromcity between people who are mteracting and that assess asymmetrv and

symmetry (1e, dommance and bidirectionality) 1n social interaction Previously published data
on mother-infant play 1s then reexammed to illustrate the practical use of this approach These
techniques are, however, completely general for infernng relationships between 2 vanables that
change with time and thus mav provide a foundation for the study of other developmental

problems

There 1s a rapidly growing imterest 1n the
study of soual development using observational
methods, and this interest spans many areas of
developmental psychology, for example, ethol-
ogy (see Wilson 1975) and developmental
studies of parent-child interaction (see Stern
1977) There 1s also an increasing recognition
of the madequacy of frequencies or rates of
spectfic soctal behaviors for summarizing data
on social mteraction and, consequently, a new
concern for the detection of patterns over time
and the assessment of vareties of nterconnect-
edness between two interacting individuals

The study of data over time 1s ideally
suited to time-series analysis, and this paper
will argue that considerable theoretical clanty
can be obta:ned using time-series concepts One

Ob]ectlve of the paper 1s to reconceptuahze two
concepts that have played central roles mn the
study of social mteraction and social develop-
ment—dommance and bidirectionality A sec-
ond objective of this paper 1s methodological
Inference about cross-correlation between two
vanables that change over time must allow for
autocorrelation within each series The general
analysis of time-related senies has been exten-
sively considered (see Anderson 1971, Box &
Jenkms 1970, Jenkins & Watts 1968) and the
particular problem of cross-correlation has been
of interest to econometrics for at least 10 years
(see Pierce & Haugh 1977) This paper pre-
sents an approach that combines several such
concepts mnto one integrated method, we wall
attempt to explan this method with a mmmmum
of mathematics Derivations, where needed,
will be given m Appendix C
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Dominance

The concept of dominance has been oper-
ationahzed m many ways and apphed to an
enormous range of soual phenomena In this
discussion we refer only to domimance concepts
designed to characterize social interaction rather
than the traits of indiniduals Concepts de-
signed to study the former are usually specific
to group composition and situational context,
and this 1s the sense in which we are interested
mn dominance

By dominance, researchers always refer to
some asymmetry usually m the frequency of
some specific variable designed to operational-
1ze the dommant behavior For example, m re-
search on family nteraction, Hetherington and
Martin’s (1972) review listed these vanables
who speaks first, who speaks last, and passive
acceptance of a solution on a problem-solving
task Jacob (1975) hsted talk time, number of
statements, number of successful mterruptions,
and number of all acts Asymmetry on one or
more of these variables 1s always the basis for
a deasion about dommance

There are several problems with defining
dominance as asvmmetry 1n these rates or fre-
quencies Furst, the defimtions assume that an
1somorphism exists between dominance and
asymmetry m the relative frequency of a spe-
cific behavior, however, in some famihes the
most dommant member may be a person who
does not speak very often, who rarely inter-
rupts, but who has great impact when speak-
ing For example, if a dommnant member makes
a demand, subsequent comphance by others
might be more hkely than 1s the case with less
dommant members In this case we would ex-
pect the asymmetry to be detectable m patterns
of interaction rather than i the relative fre-
quency of a speafic code, which 1s a mean over
time

A second problem with these defimtions of
dommance 15 that domiance may not be de-
tected m one vanable but m overall patterns
across several vanables At first glance this
problem may seem reasonably trivial, however,
historically, the selection of the appropriate
variables has been a serious problem For ex-
ample, 1n the ethological hterature on the natu-
ralistic observation of animal behavior, dorm-
nance has been defined 1n terms of asymmetry
1n resource utihzation, terntory, freedom of mo-
bility, and the successful outcomes of aggres-
sive bouts One promising variable for assessing
dommance would appear to be the outcome of

aggressive bouts over competition for the utih-
zation of resources However, mn naturalistic
observation of mtact social groups, these events
have been difficult to observe for several rea-
sons First, one of the functions of a dominance
structure 1s to minimize aggressive encounters,
and they are thus mfrequent Second, as Wilson
(1975) noted “Serious difficulties in the dom-
nance concept appeared as soon as the 1dea was
extended to the more complex hife of primates

Some writers then recogmzed that m both
primates and wolves a rich repertory of signals
15 used to denote status in a manner not di-
rectly coupled with aggressive mteractions
Status signs were seen to be metacommunica-
tive, indicating to other animals the past history
of the displaying individual and 1ts expectation
of the outcome of any future confrontations”
(p 281) There 1s also some evidence that
highly “telegraphed” dominance behaviors, that
15, the abbreviated vestiges of previouslv more
elaborated sequences of actions, are used to
remind a subordinate of 1ts status Stephenson
{Note 1) found evidence for an 1diosyncratic
“dominance dhalect” 1n a particular alpha male
n a group of rhesus monkeys The alpha male,
the most dommant member, had an unusual
spastic motion of his arm out to one side When
he died, the new alpha male, who had never
been observed to display this behavior, began
doing so To test the hypothesis that this be-
havior 1s associated only with the most domi-
nant animal, Stephenson removed this animal,
and the new alpha male also adopted this be-
havior, as if 1t were the scepter of command
Often, the speafic behaviors that represent the
“dialect of dominance and submission” are
present but are subtle and difficult to detect
For example, Shirek-Ellefson (cited i Cheva-
her-Skolnikoff 1973) noted that the threat dis-
plays of Macaca fasciclaris are open-mouthed
stares if the ammmal 15 dommant and bared-
teeth stares if the animal 1s subordmate

Attempts to extend the notion of a domi-
nance hierarchy to human groups revealed that
dommance was even more complex for human
than for primate groups For example, 1t 15 pos-
sible to estimate hierarchies using asymmetry
in the outcomes of aggressive encounters of
preschool children (McGrew 1972, Strayer &
Strayer 1976) by employmmg hnear models
(with varymg degrees of success), but as
Vaughn and Waters (1978) pomted out, “Dis-
satisfaction with the unidimensional concep-
tualization of social organization stems primar-
ly from the fact that ‘dominance’ rankings
based on the outcomes of aggressive encounters



have not proved very revealing with respect to
other aspects of behavior” (p 360) Vaughn and
Waters’s study of one nursery school class found
that lmear models of a dommance herarchy
based on two different types of aggressive so-
cial encounters— (1) gazing and hostihty and
(2) object struggles—were not sigmficantly
correlated, r = 20

We wish to propose that an alternative to
searching for asymmetry m the rates or relative
frequencies of specific behaviors that are as-
sumed to reflect dominance 1s to operationalize
the concept of dominance as asymmetry in pre-
dictability, that 1s, 1if B’s behavior 1s more pre-
dictable from A’s past than converselv, A 1s
saild to be dommant This 15 a defimtion that
could span a range of behaviors, and asym-
metrv in the predictability of these behaviors
could reflect dommance patterns even if the be-
haviors themselves do not The behavior of the
alpha male should be less predictable from the
behavior of the beta male than conversely, m
general, 1t 1s the beta male who must attend to
and respond to the behavior of the alpha male,
and not conversely

Recent theonzmg on dominance supports
our proposed definition of dommance An at-
tempt was made recently to extend the dom-
nance concept beyond the arena of aggressive
mteractions Chance suggested that the asym-
metrical patterning of attention, usually as-
sessed by visual gaze, could be used as an index
of dommnance even i nonaggressive encounters
(Chance 1967, Chance & Jolly 1970, Chance
& Larsen 1976) This suggestion 1s entirely con-
sistent with the asymmetry-in-predictability
definttion, although the predictability definiuon
1s more general, for example, the measure could
be excitement or activity levels during play as
well as gaze

However, there 15 an mportant hmitation
of this equation of asymmetry m predictabihity
with dommance For example, i caretaking
interactions, the fact that a mother’s behavior
15 more predictable from her baby’s behavior
than conversely may be purely a function of
the caretaking context, m play mteractions the
same asymmetry mav be indicative of the
soual/ cognitive developmental level of the -
fant If a mother waits for her baby to be nter-
ested m play and her behavior 1s thus highly
predictable from her baby’s, but not vice versa,
it does not make much sense to refer to the
baby’s behavior as “dommant” 1n the same
sense as an alpha male monkey’s aggressive be-
havior toward a beta male may be called dorm-
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nant Another example may strengthen this
pomt Vaughn and Waters (1978) found that
among preschool children, visual gaze data
taken during free play indoors did not correlate
significantly with data on aggressive social en-
counters, although the gaze data were highly
correlated with peer picture sociometric data
on hkmg, which measure a child’s preferences
m affiliation with peers in that social group
In other words, children tended to look most
at those children with whom they would prefer
to play but with whom they usually did not
play In short, asymmetry in predictabihity need
not always mmply dommance Dominance 1s a
function of the mteractants and of the situ-
ational context of the interaction The concep-
tual label given to asymmetrv m predictabil-
ity should thus varv as a function of the de-
pendent measures, the context (e g, the goals
and tasks of the mnteraction), and the nature
ot the mteractants We can distinguish four
major contexts that have been studied 1n social
interaction (a) caretaking (e g, mother-infant
feeding), (b) plav (e g, mother-nfant play,
peer play), (¢) competition (e g, object strug-
gles among preschool children), and (d) coop-
eration (e g, decision making or problem solv-
mg 1 famibes) If an observational study sam-
ples from different social contexts, one need not
predict a prion that the same dimension would
be tapped by asymmetry 1n predictabihty, even

if the same variable (such as gaze) were used

While dominance always refers to an
asymmetry, symmetry 1n predictability may also
be theoretically interesting For example, 1t may
be profitable to 1dentify that pomt m a child’s
development when 1ts teraction with ats
mother becomes bidirectional The bidirection-
ality implies that the mother 1s responding to
her baby and that the baby 1s responding to the
mother In fact, in the developmental literature
there has been lively discussion of bidirection-
ality and we will review this discussion

Bidirectionahty

Bell's (1968) paper on the bidirectionality
of effects m research on child rearing led re-
searchers of parent-mfant mteraction to begin
viewing thewr observational data as bidrection-
al This changing view of the infant’s capability
was made possible by research m the 1960s
that found the mfant's repertorre much larger
and more sophisticated than had been expected
(eg, Fantz 1964) To understand the nature
of this breakthrough we need to recall that the
historical context for the renewed study of
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parent-infant interaction in the late 1960s was
personality theory and that as late as 1965
Handel wrote a review paper suggesting that
the central developmental 1ssue m this area was
to understand to what extent the child s person-
ality 15 predictable as some linear combmation
of the parents’ personalities The shift to a
model of an active infant was a shift toward
a systems view of development, 1t was not just
that the mfant was not a tabula rasa, but the
mfant had a piece of chalk of its own The shuft
also mcluded the movement toward mcluding
the study of psychological processes (e g, so-
ctal interaction) as well as developmental out-
comes (e g, personahity and cognmtive levels)

The developmental issue 1s the nature of
bidirectional social interaction and its implica-
tions for the mfant’s developing social compe-
tence To understand this pomt, consider the
fact that 1t 1s apparently uresistble for re-
searchers not to speak of the mfant’s behavior
as mtentional, planful, and goal oriented For
example, Stern (1977) wrote, “Beginning
around the third month, the smile takes another
developmental leap and becomes an mstrumen-
tal behavior By mstrumental we mean simply
that the infant will now produce the smile m
order to get a response from someone, such as
a return smule from mother or a word from her
The smile itself, however, still looks the same”
(p 45, emphasis added) We suggest that what
may have changed n the infant’s smile by 3
months 15 nerther the smile nor the mother’s
response to the smile but the ability to predict
when the baby will smile from the mother’s be-
havior The developmental leap may thus be
the occurrence of bidirectionality m predict-
ability

Bidirectionality has also been studied m
proneering research by Brazelton and his col-
leagues (e g, Brazelton, Koslowski, & Mam
1974, Tromck, Als, & Brazelton 1977) In this
research the behaviors of mother and mfant are
recorded by two cameras and merged on a sphit
screen with a time code that makes 1t possible
to code a 5-mm play session m slow motion or
frame by frame This detailed quantitative anal-
ysis of nonverbal behavior was a major break-
through i thisarea An additional breakthrough
was the umvanate scaling of the microcodes on
a dimension of affective involvement The de-
tailed microcodes were categorized into “mo-
nadic phases” that were then scaled on a di-
menston that ranged from maximum negative
mvolvement to maximum positive mnvolvement
and excitement This scaling made it possible

to examme overall patterns in interaction that
muight not have been tapped by one isolated
code, and 1t simultaneously gave specific be-
havioral referents to the scale (see Brazelton
et al 1974) Tromck et al (1977) observed
three mother-infant dyads and summanzed
their analyses by the time-senies graphs dis-
played as figure 1

The objectives of subsequent analysis of
the Tromck et al (1977) data were (1) the
detection of cycheity i both mother’s and in-
fant’s affective involvement, (2) the detection
of synchromcity in a dyad’s behavior, and (3)
the detection of bidirectionahty To accomphsh
these objectives, Tromick et al (1977) com-
puted correlations between mother and mfant
scaled scores, each correlation was based on 10
sec of interaction, the first correlation was based
on seconds 1-10, the second correlation on
seconds 2-11, and so on (see fig 2) They
wrote, “High positive correlations would indi-
cate that the mother and the mnfant were syn-
chronously moving n the same affective direc-
tion, high negative correlations that they were
changing their affective involvement i oppo-
site directions, and low correlations, exther posi-
tive or negative, that there was a general lack
of relattonship or lack of cycling between the
changes of their affective mnvolvement” (Tro-
mck et al, p 77) Tromick et al (1977) re-
ferred to positive correlations as “synchrony”
and conclude that “the analysis of the scaled
sum scores shows that the infants are capable
of modifying their affective and attentional dis-
plays 1n a reciprocally coordinated manner” (p
78) Furthermore, “the mfant 1s able to com-
municate his or her intent and to respond to
the expressed mtent of the mother He or she
can sequence expressive displays m an appro-
priate serial order while allowing for the turn
taking necessary to the reciprocal exchange of
messages” (p 79) To summarize, Tromck et
al were thus interested in making the following
conclusions (1) that mother and infant play
1s synchronous and reciprocal and (2) that the
nfant 1s responding to the mother, that 1s, that
effects are bidirectional From these conclu-
sions they hoped to construct models of the
infant’s soctal competence

Unfortunately, 1t 1s not possible to support
these conclusions from the running correlations
If the mother and infant’s behavior were en-
tirely cychic, with unequal frequencies, the be-
havior of each would be completely determimed
by 1ts own past and no knowledge would be
gamed by knowmng the behavior of the other



This 1s a case of no interachon Nonetheless,
the Tronick et al running correlations would
be nonzero The mother’s and baby’s cycles
would be successively i phase (giving positive
correlations) and out of phase (giving negative
correlations) This fact 1s not difficult to prove
mathematically 1
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One mught, at first glance, suppose that
the problem 1s that Tronick et al only examine
some of their cross correlations, that 1s, only
those at lag zero, and only for part of the data
at a time However, this 1s not the core of the
problem in inferrmg bidirectionality What
needs to be demonstrated 1s more than that
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predictability (at any lag) exists from mother
to mfant and from mfant to mother By itself
this demonstration 15 madequate to nfer bi-
directionality because of the problem of auto-
correlation This was recently pomted out by
Sackett (1980), who wrote, ‘ The basic 1ssue of
autocontingency has not been addressed by
students ef social interachon Unfortunately
autocontingency does affect the degree to which
crosslag dependencies can occur In some -
stances, apparent cross contingencies may be a
total artifact of strong autolag functions” (p
330) Sackett’s pomt 1s consistent with Jenkins
and Watts (1968), who showed that “very
large cross covariances, all of them spurious
can be generated between two uncorrelated
processes as a result of the large autocovari-
ances within the two processes” (p 338)

To demonstrate that the behavior of the
baby 1s influenced by the behavior of the
mother, this paper suggests that we need to
show that we can reduce uncertainty in the
infant’s behavior from our knouledge of the
mother’s past behavior, over and above our
abiity to predict ssmply from the infant’s past
A similar discussion can be found 1 a recent
paper by Pierce and Haugh (1977) on assess-
ing causal relationships between economic time
series Bidirectionabty occurs when we can
demonstrate the converse as well, and asym-
metry mn predictability occurs when we cannot
demonstrate this symmetry

We will now discuss the techniques of
time-series analysis that address each of the ob-
jectives of the Tronick et al (1977) paper We
begin with a discussion of stationarity, of the
need for describing the data in such a way that
the same patterns of relationship hold through-
out the series, we continue with the detection
of cychaty and synchronicity, and, finally, we
develop the mathematical models and signifi-
cance tests for assessing bidirectionality The
mathematical discussion of the mother-infant
data presented in the remamnder of this paper
15 completely general and apphcable to other
types of social interaction However, as we have
pomted out the conceptual mterpretation of

the statistics may vary with interactional con-
text These analytic methods are currently being
applied m our laboratory to affective expression
m martal mteraction, in which asymmetry 15
best mterpreted as differences n emotional re-
sponsiveness, and to asymmetry i gaze proba-
bilities m sibling mteraction, 1n which asym-
metry 1s mterpretable as dommance To con-
serve space, we will not present data taken
from these mteractional contexts but will limat
our discussion to mother-infant mteraction

Detecting and Correcting for
Nonstationarity

Time-series analysis assumes that the data
are stationary, that 1s, that the data vary about
a fixed mean and the same pattern of auto- and
cross-covariance holds independent of historical
time Moreover, time-series analysis, hike any
other statistical analyﬂs, requires a certam
amount of rephcation and repetition Thus, for
the data to be usefully analyzed, the length of
the series should be considerably longer than
duration of the important auto- and cross-corre-
lational effects bemg analyzed However the
data may not be stationary, and, indeed, the
presence of nonstationarity may be one of the
most mteresting facets of a set of data At the
sumplest level there may be general trends—
linear, seasonal, or otherwise—in the data
There may also be local trends—up for awhile,
then down, then perhaps level Patterns of cor-
relation may change, especially at the begm-
ming of a record as patterns just begin to assert
themselves, or at the end as they decay Or
there may be some constant change m auto-
correlation and cross-correlation through time

When the onginal data are nonstationary,
several alternatives exist, we will review two
(see Chatfield [1975] for another) First, it may
be possible to divide the data mto successive
chunks, such that the data are reasonably sta-
tionary within each chunk Second, the data
may be transformed so that the transformed
data are stationary Box and Jenkns (1970)
suggested that the difference from observation

running correlations could be obtamed by switably modifying B and M Nonetheless, the mother
and baby 1n this example could not be called interactive, their nonzero correlations are purely
an artifact of their cvcheity By modulated cyclicities, the following 1s implied The sum of two
sine waves with frequencies G and H can also be wntten as the product of two times a sme
wave with frequency (%)(G+H) and a cosine wave with frequency (%)(G—H) This means
that the sum 15 not a simple sine wave but “modulated” as follows It has a new frequency,
which 15 the average of those i the sum, and a nonconstant amphtude that vanes rhythmically
with slower frequency [(%)(G—H)] These rhythmic changes in amphtude are called beats
For an illustration, see Courant and John (1965, p 581)



to observation (the slope), or perhaps the dif-
ference of the differences (the acceleration),
may be stationary The differencing transforma-
tion creates a new timne series, Ye» from the orig-
mal time series, x,, by the transformation y, =
X; — X;-q, SO as to produce y, = x, — x, Y5 =
G — X3, Y3 = x4 — 13, and so forth Thus, m
any time-series analysis we must first examine
the data carefully and either divide the data
mto separate stationary pieces or, to the extent
necessary, transform the data so that the trans-
formed data are stationary

The 1ssue of nonstationarity 15 complex,
and a full discussion 1s not possible i the space
of this paper (the reader 1s referred to Box &
Jenkins [1970] and Chatfield [1975]) However
we can note here that the autocorrelations can-
not be consistently large for stationanty be-
cause this suggests that long-term polynomial
trends exist in the data which will necessarily
make the autocorrelations msensitive to local
temporal variation The long-term trend can be
removed by differencing an appropriate num-
ber of times (Box & Jenhins 1970) or by est-
mating the polynomial trend and subtracting it
out (Chatficld 1975)

Detection of some forms of nonstationarity
15 rather easv The estimated autocovanances
of a stationary time series die out rapidly,?
hence, as a rule of thumb, f the autocovan-
ances show any consistent pattern for lags over
T/6, where T 1s the number of observations,
nonstationanty 1s suggested The figure T/6 15
a rule of thumb proposed by Box and Jenkins
(1970) The rationale 1s that estimates of auto-
correlations for large lags are less rehable than
estimates for short lags because they employ
increasingly fewer data pomnts, for lag A only
T — A data ponts are used It should be noted
that to detect one stochastic cydle of any period
only two lags are needed, not the number of
lags equal to the period Hence, extremely
complex combmations of cvchaty can be de-
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tected with T/6 lags, if T 15 reasonably large
If consistent patterns are detected in the auto-
covariances, differences should be considered,
the autocovariance function of the series of dif-
ferences exammed, and, if necessary, differ-
ences should be taken agam Differences will
simultaneously eliminate nonstationanty due to
trends, strictly seasonal low-frequency compo-
nents, and nonstationarity in cychaty m the
low-frequency ranges

From the Tromick et al (1977) data, a
first differences transformation was necessary to
achieve stationarity * As a representative exam-
ple, the autocovanance functions for the mother
of dvad 3 are shown in hgure 3A and B for
both the detrended original data and for the
sertes of differences Note the patterned large
autocovariances for lags bevond 20 1n the ong-
mal data but the smaller and rather random
autocovanances for lags greater than 10 i the
series of differences

The original discussion of the data by Tro-
mck et al also suggests that differencing 15
appropnate In examming the running correla-
tions for synchromiaty, Tromich considered
agreement not between the affective levels of
mother and baby but, rather, agreement m how
they were moving or, equivalently, how well
the differences between successive observations
agreed Thus, considering differences 1s a direct
extension of the ongmal Tromck et al (1977)
analysis although we also consider autocorrela-
tion and cross-correlation at larger lags

Detecting Cycheity and Synchromeity

It 1s not uncommon for researchers who
study soual interaction to comment on the
periodicity and cychaty of social behavior and
to sense intuitively the need for analytic meth-
ods to detect these patterns In fact, cveles and
synchromaty are particularly interesting to re-
searchers of parent-mfant interaction However,

2 To detect nonstationanty, the speed with which the autocorrelations, r;, die out (decrease

to zero) with increasing lag, k, can be used A useful rule of thumb 1s that r:2 should decrease
faster than 1/k%, where @ > 1 Penodic increases mn 7, suggest a nonstationary determmnstic
vcle, which should be removed from the data (see Chatfield 1975)

3 The Tromck et al data were, on closer examinahon, nonstationary for a reason not sug-
gested i the general discussion Examinaton of the spectral density function (see p xx) com-
puted for the first and <econd halves of the data indicated that, as the play progressed, the
cyclicity became faster Ths result 1s consistent with observations made bv Damiel Stern (Note
2) that as the play progresses, the infant’s and the mothers tempo increases Because the

reatest difference between the two halves of the data were 1n the slowest cvchaities, after dif-
ferencmg, this effect was not verv large Nonetheless, this check for nonstationanty revealed
some new information about the data Thus, a general recommendation 1s that, although trans-
formations can ehminate many forms of nobstationanty, it can be extremely informative to
model the nonstationanty so that the precise work performed by the transformation 1 revealed
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researchers have tended to be frustrated n
summarizing therr data, and mstead they have
rehed on metaphors that create a veneer of
time-series language For example, Condon and
Ogston (1967), using slow-motion film, under-
took the frame-by-frame microanalysis of 15
min of the dinnertime mteraction of a father,
mother, and son They wrote, “We are dealing
with ordered patterns of change during change,
which exhibit rthythmic and varying patterns in
the temporal sequencing of such changes Meta-
phorically, there are waves within waves withm
waves, with complex yet determmable relation-
ships between peaks and the troughs of the
levels of waves, which serve to express orga-
nized processes with continually changing re-
lationships” (p 224) This bewildering array
of metaphors 1s an excellent intmtive prologue
to spectral time-series analysis methods

In a recent paper, Gottman (1979) re-
viewed the methods of spectral ime-senes anal-
ysis for detecting cyclicity n social interaction
The reader 1s referred to that paper for details
on analyzing time-senes data g)r cychoty and

synchromcity mn social mteracion We com-
pleted a spectral analysis of the Tronick data
and recommend such an analysis for eshmating
the mitial values for the number of parameters
necessary 1 the models we will recommend m
this paper The spectral analysis of the Tromick
data 15 useful for increasing the efficiency of
the time-series analyses but, technically, 1s not
absolutely necessary To conserve space, and to
simphfy our discussion, we present these spec-
tral analyses in Appendix B By themselves the
spectral analyses are madequate to test for
dommance and bidirectionality because auto-
correlation must be controlled n inferring cross-
correlation

The Analysis of Bidirectionality

To augment the frequency domam anal-
yses, 1t 15 essential to construct mathematical
models in the time domamn that control for
autocorrelation in the data in the assessment of
cross-correlation Fortunately, there 15 a prece-
dent of model building that we can call upon
m the time-series literature We will apply the
transfer function models proposed by Box and
Jenkins (1970) If the mother’s time-series n
figure 1 1s denoted M, and the baby’s series by
B,, we will wish to write a model m which we
first try to account for as much of the vanance
n each series by knowledge of 1ts past and then
determime how much we can improve this re-
lationship by adding knowledge of the past of
the other series Stated mathematically, this
model 15

A B
Ml = ZGIM!-—-l + ZblBl—| + £, (1)

1=1 1=l

and

C D
Bi= 2 ¢Bo,+ 2 dM._, + n

1=1

1
t=112 T, (2)

where we assume that ¢; and n, are indepen-
dent, normally distnbuted with means zero and
varances ¢.? and @2, respectively We will de-
velop a maximum-likelthood procedure for test-
ng the bidirectionahty hypothesis After a con-
ceptual discussion mn the mam text, we shall
present an example of the actual analysis, with
the necessary SPSS programs, to illustrate the
implementation of these ideas

To summarize the mathematics n Enghsh,
one way of thmking of the model 1s to transfer
the first summation on the night-hand side of
each equation to the left-hand side The model



thus attempts to predict the residual from an
autoregression on each series from the past of
the other sertes The nnovation processes &,
and n, are the residuals of this prediction If
there 15 no gamn m this prediction, this means
that a smaller autoregressive model without the
past of the other series 1s adequate We thus
seek tests for comparing smaller models with
bigger models Because of autocorrelation we
will not be able to derive exact F-ratio statis-
tics, but we will be able to develop hkehhood
ratio tests with asymptotic distribution theory
These tests are generalizations of the univarate
procedure discussed 1n Anderson (1971) Pierce
and Haugh (1977) discuss this model, although
therr analysis differs shghtly

There may appear to be an indetermimacy
m the model The mother’s behavior depends
on her own past as well as on the baby’s {:ast,
which i turn also depends on the mother’s
past However, because of the assumption that
the mother and baby are introducing indepen-
dent mnnovations e, and n,, there are umque
estimates for all parameters Moreover, the esti-
mates of the a,’s and b,’s do not depend on the
¢’s or d/’s, so equations (1) and (2) can be
handled separately The proof of this assertion
15 available on request from the first author

We will apply a least-squares procedure
onigmally proposed by Mann and Wald (1943)
for esimating the a, and b, for a given A and B
conditional on “start up” observations My, M _,,

,M_,.,and B,, , B_y., The first A
or B observations {whichever 1s larger) at the
beginming of the play sessions are thus treated
differently from those once the session 15 estab-
lished The parameter vector for the a,’s and b,’s
15 estimated bv ordinary least-squares regres-
sion * The residual mean square error ¢, will
be estimated in the usual way Details are given
i the Appendices to this paper

We will fit a model with A and B larger
than necessary and test at the 10% level whether
a, =0 or by =0 Note that this 1s not the
usual hypothesis-testing situation We wish to
mclude terms if there 1s any evidence at all that
they are nonzero Thus, we use the analysis
wformally, we choose the alpha level to be
rather large and do not worry about multiple
companson problems If a, = 0 or by = 0 we
fit a smaller model and repeat the testing and
thus step-by-step reduce the model to appro-
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priate size to find the best full model to de-
scribe the series

Employing the least-squares estimation
Frocedure reduced “null hypothesis” models
or the mother’s and the baby's behaviors,
which assurne no nteraction can also be fitted
In this case we have a reduced model m which
the only terms we consider are the past of each
senes, terms from the other series are dropped
out Stated mathematically, this 1s

A‘
Mt= Zax*Ml—l+et*y (3)
=1
and
c*
B, = Z C:*Bt-z + ”z* (4)
=1

A new parr of estimates for the vanances of ¢,*
and n,°, namely, (4,°)2 and (4,°)?, respective-
ly, can be found To test whether the cross-
regressive terms in the final models of the form
(1) and (2) sigmficantly help predict the
mother’s or baby’s behavior, we will compare
mode! (1) with (3), using the same value for
A and A®, and model (2) with (4), usmng the
same value for C and C*, with the likehhood
ratio test procedure described below This s
the more usual testing situation, and we will
require significance at the 5% level before as-
serting that the cross terms do contribute, that
one series 15 partially predictable from the
other Figure 4 gives a summary of the four re-
gions that are possible outcomes of these tests

ASYMMETRY | BIDIRECTIONALITY
B—>WM B=>M
M7 B M—>B

MODELS HOLD (1)8{4){MODELS HOLD (1)&(2)

NO |NFLUENCE® ®

ASYMMETRY

BAM 8 M

M+ B M->8

MODELS HOLD (3)8(4){MODELS HOLD (3)&(2),

Fic 4 ~Four quadrants illustrating bidirec-
tionality, domunance (or asymmetry n predictabil-
ity), and no imteraction for two individuals, M
(mother) and B (infant)

4 Differencing can be suggested by the least-squares autoregressive parameters, e g, if
@ = 10, or 1s close to 10, first differencing may be useful
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If B> M denotes that the mother’s behavior 1s
predictable from her infant’s, then region 2
represents bidirectionality, and regions 1 and 4
represent asymmetry In another context these
two regions could represent domnance pattern-
mg

In addition, we will want to compare
models of the form (1) and (2) with differ-
ent A, B, C, and D to check whether, overall,
the mital term-reduction procedure was justi-
fied and to compare models of the form (3) or
(4) with different A® and C° to check whether
additional terms m a purely autoregressne
model give a significantly better fit Nesther of
these two tests should give significant results
They are mternal checks on the vahdity of the
procedure

Each of these model compansons 1s car-
ried out using the followmmg hkehhood, equal
to % In (error sum of squares/T}, where T 1s
a number of observations (not the degrees of
freedom for error) If we have two models, one
a reduction of the other, the reduced model
then adequately descnibes the data, then the
statistic, denoted Q, which 1s —2T times the
difference 1n log likehhoods, has approximately
a x? distribution, where the degrees of freedom
1s the difference m the number of parameters
between the full and the reduced model If Q
1s too large, we have evidence that the larger
model 1s more appropriate than the reduced
model We refer the reader to Appendix A for
a specific numerical example and to Appendix C
for theoretical discussion of this procedure

In all models compared we are assuming
mpheitly that T 15 unchanging Our procedure
will be to establish the first 10 terms of each
series as start-up observations (so time = 1 18
the eleventh observation) This 1s not mathe-
matically necessary The same lkelihood ratio
tests apply with different T’s, and we could
take only as many start-up observations as
needed mn any particular model—more for
models with more terms, less for shorter mod-
els—but we then have some difficulty mnter-
preting results about shghtly different stretches
of data

For the Tronick et al (1977) data, 1t was
also necessary to truncate the data, tossing out
the last observation of each series The last ob-
servation was usually uncharactenishic of the
pattern m the data, representing the end of the
interaction (see fig 1, interactions I and III)

To summanize, we suggest the followmg
time-domain analysis for each of the six series

(mother and baby mn each dyad) (1) Using
spectral estimates (see Gottman 1979}, guess
appropriate values of A, B, C, D, (n) starting
with shghtly larger A, B, C, and D, step by step
remove terms to find an appropriate model of
the form (1) or (2), (m) compare the model
mm 1 with the one of the form (3) or (4)
where A® and C*® are the values in the model
computed n 1, and (1v) compare the reduced
model 1 m with one with larger A® or C*
to check that additional autoregressive terms
do not help

The data requirements for the time-series
analyses proposed in this paper are (1) data
that are stationary or can be made stationary
and (2) a stretch of data long enough so that
teresting autocorrelational patterns are shorter
in duration than the data, which usually would
imply at Jeast 150 data points The data need
not be normally distributed for the log-hkeh-
hood ratio statistics to be distributed asymp-
totically as described If the data are dichoto-
mous as m the case of occurrence/nonoccur-
rence of a particular behavior (e g, visual gaze
toward other), more than 150 observations are
necessarv to approach asymptotic conditions
whereas 1f the data are completely normal, the
analyses could be safely conducted with fewer
observations Note that differencng the data
1s not a statistical requirement, the analysis re-
quires only two stationary, potentially related
time series The methods used m this paper
to achieve stationarity were created 1n response
to the data at hand, other methods might be
more suitable for other cases We will now give
the results of such an analysis on the differ-
enced Tromick data

Bidirectionality Analysis of the
Tronick Data

The spectral analyses of the Tronick data
provide mitial estimates of A, B, C, D for all
dyads to be no larger than eight, hence, con-
servatively, we may start with estimates of
A =B =C =D = 10 In practice, if the read-
er does not use spectral analyss, it might be
wise to check some of the larger values for 4,
B, C, and D The results of (1) the ongmal
excessively large model with A=B=C = D
= 10, (n) the step-by-step reduction, (1) the
model fitted by removing the cross-regressive
terms from 1, and (1v) a model with 10 auto-
regressive terms and no cross-regressive terms
are summarized mn table 1 For comparison,
the residual vanance has also been given for the
observations without a fitted model The rele-



vant hkelthood ratio test results are obtamned by
comparing (1) the starting model, (u) the best
auto- and cross-regressive model, (1) the pure-
ly autoregressive model, and (1v) the enlarged
autoregressive model Recall that the compan-
son of 1 versus 1 and m versus v should give
nonsignificant results, bemng merely nternal
checks on our method, while the comparison of
1 versus m will mdicate the presence or ab-
sence of predictability of one series from the
other, controlling for autocorrelation

In each case, note that the step-down pro-
cedure behaved as expected and that adding
additional autoregressive terms did not sigmfi-
cantly decrease the error vanance For dyad 1,
we can assert B — M, but we do not have suf-
fiient evidence that M — B Note that, how-
ever, as we have set thmgs up, we assume no
cross relation until 1t 1s clearly demonstrated
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In dyad 2, we have B— M with really no ev1-
dence at all that M — B, that 1s, no evidence
of bidirectionality This 1s a case of the mother
very closely following an mdependent baby
Dyad 3 1s both more comphcated and more
mteresting We clearly have M — B, here for
the first time 1s a baby responding to the
mother In addition, we have evidence at the
5% level that B— M, that we have mdeed a
bidirectional dyad The baby in dyad 3 was the
oldest of the three

Summary

This paper has been a reanalysis of two
concepts 1n the studv of social behavior, one
mvolving asymmetry, that 1s, dommance, and
one mvolving svmmetry, that 1s, bidirectional-
ity We noted the importance of the context of

TABIF 1

St MMARY OF THF TIME-DoMAIN ANALYSES

MOTHFR Basy
Th Tln
1 B SSF (SSE/T) C n SSE (SSE'T
Dvad 1 (T = 168)
1 10 10 212 7 39 62 10 10 345 3 121 02
1 3 5 228 4 51 61 8 7 357 3 126 75
m 3 0 249 6 66 50 8 0 380 7 137 45
1 10 0 240 8 o) 48 10 ] 372 7 133 8%
0 0 257 0 71 42 0 0 4130 151 92
VS 1 012 = 11 99, \ § 05) =351 ‘\'§
nys m 05 =14 89 p < 0235 Q(7)y =10 70, XS
nmvs v N =602 NS @2) =3 60,\S
Conclusinns B> M»B
Dvad 2 (T = 161}
1 lO_ 10 625 9 218 61 10 10 511 6 186 13
n 8 1 660 2 227 19 10 8 519 4 188 56
m 8 0 705 3 237 82 10 0 540 1 194 88
1v 10 0 703 1 237 32
0 0 834 0 264 81 0 0 694 0 235 23
1vs 1 Q1) = 8 5§, N S 02y =243, NS
nvs m Q(10) = 10 63, p < 001 O8) =6 31, NS
nvs i 2y = 50,\S
Conclusions B—oif M»B
Dsyad 3 (T = 168}
1 10 10 674 9 233 62 10 10 412 1 150 7~§
n 4 8 688 § 237 05 4 5 447 4 164 55
n 4 0 759 3 253 41 4 0 503 4 184 37
v 10 0 745 2 250 27 10 0 47? 1 176 05
0 0 810 ¢ 264 28 0 0 5150 188 19
1vs 1 Q8) =3 43, N S 0O =13 81 NS ;
nvs 1 Q8 =16 36,p < 05 Q(5) = 19 82 p < 005
Vs v 06y =3 14 \S Q) =8 32,\S
Conclusions B-M VY —B
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the interaction and the nature of the mteract-
ants 1n employmng the terms, noted that both
terms 1mply socwul nfluence, which could be
assessed by predictability Consistent with this
discussion, we suggested that dominance can
be defined as asymmetry m predictability m
social variables of importance, and bidirection-
ality as symmetrical predictability We dis-
cussed the conceptual advantages of these defi-
nitions and the usefulness of a method for
quantitative assessment taken directly from the
stream of behavior

We apphed time-series analysis in the time
domain for this assessment and noted that the
fundamental assumption of stationarity must
first be considered We mentioned the analysis
of cychaty and synchromaty using spectral
time-senies methods but pomnted out the lm-
tations of this analysis when estimating lead-lag
relationships to make inferences about bidirec-
tionahty because these analyses do not control
for autocorrelahon We then constructed a
time-domain mathematical model (which may
be assisted by the spectral analyses) and the
statistical tests for assessing whether social in-
fluence exists, and if so, which 1s the particular
form of asymmetry or bidirectionahty

Appendix A
Sample SPSS Calculations

In this Appendix we detail the computations
needed to carry out the proposed analyses The
computations were carnied out with version 8 0 of
SPSS as implemented on the Umversity of Ilhnos
Cyber 175 We shall make use of subprogram
SPECTRAL to obtan the autocovanances and option-
al spectral analyses and then use subprogram Re-
GRESSION for the tme-domain analyses If spECTRAL
1s unavailable, PEARSON CORR can be used, with a
bit more programming difficulty mn establishing the
lagged vanables and without the graphical displays
SPECTRAL provides We present the alternative ver-
s1on at the end of this Appendix

GET FILE
COMPUTE
COMPUTE
COMPUTE
COMPUTE

The analysis proceeds m the following steps

Step A Examme the auto covanances and,
optionally, the spectra for the raw data The code

FILE NAME TRONICK
VARIABLE LIST MOM BABY
INPUT MEDIUM CARDS

N OF CASES 179

INPUT FORMAT FIXED(2F50)

SPECTRAL BIVARIATE = MOM BABY/
WINDOW = HAMMING(50)

OPTIONS 4,5

STATISTICS 13,5

SAVE FILE

FINISH

was used to read the raw data for the first dyad
and to produce auto- and cross-correlations and
spectral analyses Nonstatlonant{ was suggested by
the slow decay and nonrandom looking behawvior of
the autocorrelations and by the spectra which were
essentially zero except at very low frequencies

The WINDOW — HAMMING(50) ndicates
how the spectral analysis 15 to be carned out The
(50) represents the number of lags used, which in
general should not exceed ¥ to % of the number of
observations

Step B Take differences if necessary and re-
peat step A Because the pictures 1n step A did not
appear appropnate, we ran the regression shown at
bottom of page below First, we generate a new
vanable M1 which at time (case) ¢ has value
M._,, DMOM then has value M, — M;_,, and we
repeat the earher analysis

This time the autocovanances were small and
rather nosy for all but the first few lags, and the
spectrum showed considerable structure, both in-
dications of stationanty, so we can proceed to the
time-domain analyses Were this not the case, dif-
ferences could be formed agam Note that the
spectra can be used to assist in the following step
(see Appendix B)

Step C Fit the imtial large model 1 We 1-
lustrate here only the analysis of a mother’s be-
havior as a function of her and her baby’s past
We need to generate the dependent vanables using
the LAG operation repeatedly and carry out the
regression, as shown at top of the following page
Option 19 fits the regression without an mtercept
This 15 appropnate for differenced data which

TRONICK

M1 == LAG(MOM)

Bl = LAG(BABY)
DMOM = MOM — M1
DBABY = BABY — Bl

ASSIGN MISSING ALL(-100)

BIVARIATE = DMOM DBABY/

WINDOW = HAMMING( 30)

SPECTRAL

OPTIONS 45
STATISTICS 1,3,5
SAVE FILE

FINISH
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VARIABLES = DMOM, DBABY, DM1 TO DB10/

REGRESSION = DMOM WITH DM1 TO

REGRESSION — DBABY WITH DMI1 TO

GET FILE TRONICK
COMPUTE DMI = LAG(DMOM)
COMPUTE DM2 = LAG(DM1)
COMPUTE DM3 = LAG(DM2)
COMPUTE DMI10 = LAG(DMS9)
COMPUTE DBl = LAG(DBABY)
COMPUTE DB2 = LAG(DB1)
COMPUTE DB10 = LAG(DB9)
ASSIGN MISSING ALL(-100)
REGRESSION
DB10(2)/
DB10(2)/
OPTIONS 19
SAVE FILE
FINISH

should have a zero mean If regression 1s carned
out with the raw data, do not mnclude this option

The resulting output provides the following 1n-
formation First, from the ANOVA table we note
that the residual sum of squares (SSE) was 2127
This wall be used later for the hkelihood ratio tests
Second, we use the summary table at the end of
the output to see which vanables are and are not
significant In this case only DM3, DM4, DMS6,
DB3, and DB5 were sigmficant at the 01 level

Note that the way missing data are handled by
this subprogram treats the first 11 cases specially
since lagged values are mussing for these cases
DMOM 1s mussing for case 1, DM1 to DM10 are
misang for case 2, DM2 to DMI10 are mussing for
case 3, , and DM10 1s missing for case 11
However, the values of DMOM for cases 2-11 are
used as lagged independent vanable values in cases
12-21 Thus T, the number of observations, 1s ef-
fectively 179 — 11 = 168 This number can also be
obtained as the sum of regression df, 20, and the
residual df, 148

Step D Reduce model 1 by a backward step-
wise procedure We remove the “higher-order”
terms a few at a ttme We noted DMI10, DMS9,
DB10, and DB9 were not sigmficant at the last
step, so we try regressing DMOM WITH DM1 TO
ll))el;/l& DB1 TO DBS, as shown at bottom of page

ow

The SELECT IF statement guarantees that we
use exactly the same cases used n step C Without
this statement, this analysis would nclude two ad-
ditonal cases, making compansons between the
model here and 1n step C harder to interpret

We note from the summary table that onl
DM3, DM4, and DB3 are sigmficant (althougi‘;
DB5 1s nearly so) Thus on the next step we at-
tempt a regression of DMOM WITH DM1 TO
DM6, DBl TO DB This time, only DM3 and
DB3 are significant, although DB5 and DM4 are
close Next we regress DMOM WITH DM1 TO
DM4, DB1 TO DB5 Now we find that DM3, DB3
and DB5 are sigmficant, so we regress DMOM with
DM1 TO DM3, DB1 TO DB5 at the next stage
Here, both highest-order terms DM3 and DB5 are
significant, so we stop the step-down procedure and
record the SSE 2284 The test of the vahdity of
this reduction procedure mnvolves the two natural
loganthm hkehthoods For the ongmal model 1 we
have T In (SSE/T) = 168 In (212 7/168) = 39 62
and the reduced model n T In (SSE/T) =168 In
(228 4/168) = 51 81 The difference, 11 91, 1s not
unusually large when compared with x%, entical
pont Note that 12 terms were removed in the
step-down procedure

Step E Testmg for directionahty We regress
DMOM WITH DMI1 TO DM3 That 1s, we remove
the baby terms from the final model n above We
note the SSE 1s 249 6, whence the natural loganthm
hikehihood becomes 65 50 The test statistic compar-
ing this model m with model n above gives Q =
6550 — 51 61 = 14 89, which 1s larger than the
X2, o value (We have removed five terms, hence

5 df )

Step F Fnally, as a check we fit DMOM
WITH DM1 TO DMI0 and compare the sum of
squares from this model 1v with model m to venfy

VARIABLES = DMOM, DM1 TO DMS8, DB1

REGRESSION == DMOM WITH DM1 TO DM8,

GET FILE TRONICK
SELECT IF (DMI10 NE -100)
REGRESSION

TO DB8/

DB1 TO DB8(2)/
OPTIONS 19

FINISH
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that a larger, purely autoregressaive model would
not sigmficantly improve the fit

If subprogram SPECTRAL 1 not available, the
following, somewhat awhkward, construction waill
produce the autocorrelations for, say, the mother
series

COMPUTE M1 = LAG(MOM)
COMPUTE M2 = LAG(M1)
COMPUTE M30 = LAG(M29)

PEARSON CORR MOM WITH M1 TO M30

Appendix B
Spectral Analysis

In this Appendix we give a brief overview of
spectral analvsis, of what information these stahs-
tics can supply We then present the results of a
spectral analysis of the Tromck data, presenting the
additional descnptive information we can gather
about the interachions and then showing how this
mformation was used to 1dentify approximatelv the
form of the time-domain models

Spectral Analysis: An Introduction

The concept of “spectral decomposition” of a
tume series 1s to approximate the time senes as the
sum of independent stochastic sine waves A sto-
chastic sine wave 15 one that oscillates at a given
frequency, but where the amphtude 1s a random
vanable A random frequency can also be expressed
as a random amplitude In other words, a stochas-
tic cvele 1s more or less periodic or “almost pe-
nodic” The vanance of the whole senes 1s then
decomposed as the sum of vanances at each fre-
quency Such a decomposition of one senes 1s de-
scnbed as the spectral density function The van-
abilitv contnbuted by a frequency band (fi, f:) 1s
indicated by the area under this curve between f,
and f. Peaks m the spectral density indicate cy-
chaty  Thev indicate which frequencies most con-
tnbute to the senes Also, by applying these um-
variate spectral tune-senies analyses to the mother’s
and the baby's time senes separately, we can de-
termine if they are osallating in the same frequen-
cy ranges, which 15 1mportant knowledge for as-
sessing synchromaity

In addition to being valuable descniptive tools,
these umvarniate spectral analyses can shed hght on
the form of an approprate autoregressive model
For a umvanate autoregression, a model with two
parameters can approximate a series with one well-
defined spectral peak, one of order four can repre-
sent two cycheities, and so on (see Box & Jenkms
1970) Note that this means that only the two lags
needed to fit a model of order two and thus to de-
scnbe a cycle of any penod, even one which 1s
much longer than two time umts Thus, by exam-
mng the spectral densities, we have some indica-
tion how many agutoregressive terms we must in-
clude 1n our models

The spectral decomposition theorem 1s not ob-
vious In fact, the suggestion 1n the eighteenth cen-
turv by Damel Bernoull that a wide class of math-
ematical functions could be expressed as a sum of
sines and cosines was rejected by most of the math-
ematicians of his time (see a histonical account by
Hawkins [1975] ), and 1t remained for Jean Baptiste
Joseph Founers (1822/1978) monograph to devel-
op the concept Rigorous work on Founer’s treatise
continued for another 120 years, and the work was
only recently extended to stochastic series (e g, by
Wiener 1933, 1949)

Bnanate spectral time-senes analysis provides
two additional preces of information Furst, the co-
herence spectrum, p2(f), gives the square of the
correlation between the random amphtudes for the
two series at each frequency Correlation 1s, how-
ever, a measure of association, and no direction of
causality can be inferred from 1t When the co-
herence 1s high we have evidence of interaction,
but its form must come from other considerations,
when 1t 1s low we know there 1s hittle mfluence
either direction

Second, the phase spectrum, #(f), describes
the lead-lag relationship at each frequency If two
senes x(t) and y(t) are considered, with x(t) the
mput senes, then a negative phase indicates that
x(t) leads y(t) If x(t) denotes the mother’s senes,
this situation could be nterpreted to mean that the
mother 1s leading and the baby 1s responding to
the mother when considering cvchaty at a specific
frequency In fact, we can compute, for each fre-
quency component, the baby’s response time by dr-
vidmg the phase ¢(f) by (—27f) We assume here
that the phase 1s given 1n radians and the frequen-
cies 1n cveles per umt time ( Koopmans 1974, p 95)
If the ratio 1s zero, the senes are perfectly i phase
and synchronous The phase can be examined at
those places n the frequency range where mother
and baby are cychng together, that 1s, where therr
individual spectral densities peak at the same fre-
quency If the phase spectrum 1s a straight hne,
this means that throughout the entire frequency
range the same time lead-lag relatmns}ué) holds A
positive slope indicates that the baby leads, a nega-
tive slope ndicates that the mother leads (for a
proof of this latter result see Gottman {1979]) The
size of the slope can indicate how many cross-re-
gressive terms are needed in the time-domain mod-
els For example, if the time delay 1s 5 sec, we will
need at least five cross-regressive terms

Phase information 15 especially meamingful at
those frequencies where the mother and baby are
cychng together, that 1s, where therr individual
spectral densities peak together and where the co-
herence 1s high Indeed, the ibase spectrum 1s -
terpretable only when the coherence 1s ligh Jen-
kins and Watts (1968) showed that the variance of
the sample estimate of the phase 1s proportional to
(1 —p2)/p2 Thus if p2 15 cfose to 10, tfn(:: variance
of the phase estimate 1s small, as p2 decreases, the
vanance icreases So, low coherence suggests that
any lead-lag relationships are accidental and not
indicative of cross-corref:xtlonal patterns



In practice 1t 15 only possible to estimate these
spectral parameters for a small set of frequencies
{called the “overtone senes”) Details for such es-
timation and confidence-mterval procedures can be
found 1n Jenkins and Watts (1968) or Koopmans
(1974) It should also be noted that these estima-
tion procedures require a rather large amount of
data The Tromick senes consisted of roughly 175
observations each This was by no means excessive
The SPSS programs of Appendix A indicate how
to obtain these estimates, although confidence pro-
cedures are not available yet

To summarize, we propose the following use
of spectral time-series analysts The spectral density
estumates should be examined to find which evcher-
tes dominate the series Regions of high coherence
indicate cross-correlation at these frequencies but
do not control directly for autocorrelation In such
regions the phase spectrum can indicate asymmetric
time delavs Although these methods do not con-
trol speafically for autocorrelation, they assist n
building time-domain models which do by suggest-
mng the number of auto- and cross-regressive terms
needed

Spectral Analysis of the Tronick Data

In this section we will demonstrate the apph-
cition of spectral time-senies analysis, begmning
with the exammation of the samp{e estimates of
the spectral density functions for mother and baby
and followed by the examination of the estimates
of the coherence spectrum and the phase spectrum
Following this general description we shall indicate
hmw we used this data to start the time-domam
step-down procedure at A=B=C =D =10 Re-
call that we are examiming the differences between
ohservations, so we are considenng cychaty and
the svnchromeity of the patterns ofg change 1n the
data, not 1n the data themselves
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We did not perform our analyses using SPSS,
so there are a few differences between our plots
and those for SPSS First, SPSS labels the spectral
ntensities by the penod 1'f instead of the frequen-
cy f we show Second, the phase ¢ 1s given 1n de-
grees i SPSS instead of radians, so whereas the
vertical scale mn figure 5 15 from —7 to 7, SPS§
gives a range —80 to 180

For dyad 1, note that the spectral densities
show the same broad outhnes but that the babv
tends to be cyching shghtly faster For example, the
mother s spectrum peaks n the f= 14-18 and
36— 44 cps (cvcles per second) ranges, while the
child s spectrum peaks at the shghtly higher 20-
22 and 42- 46 ranges (see fig 6) The coherence
s low over both of these ranges, indicating that
these similar cvcheities are more a result of auto-
correlation than cross-correlation (see fig 5) Only
at verv low frequencies, which contnbute relatively
Lttle to the vanances of the two senes, 15 the co-
herence high Nonetheless, examimng the phase
spectrum suggests that there may be a general Iin-
ear trend throughout the phase spectrun This s
illustrated 1 figure 5 by the parallel lines The
slope of these hnes 15 3077, which, when divided
by 27, gives a time lag of 4 90 sec Thus, we can
conclude that, although most of the vanation n
these senes involves autocorrelation, there 1s some
mdication that at slow cychety the two senes are
mterrelated, with the mother responding to the
baby at about a 5-sec lag In view of the facts that
the coherence 1s generaﬁy low and that the phase
spectrum does not control for autocorrelation, thus
apparent time delay should be considered a hy-
pothesis to be tested rather than a proven interpre-
tation of the data

Figures 7 and 8 illustrate the facts that the
spectral densities for the mother and baby for the
second dyad both peak m the neighborhood of 10
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<7< 15, and thss 1s the frequency range of high-
est coherence Other peaks appear, but the align-
ment between the two spectra 15 less obvious or
not present, only at f = 30, where the coherence
1s low, do the spectra peak together agamn If we
examune the phase spectrum in the frequency range
of lighest coherence, we can conclude that the
baby leads the mother, by computing the time de-
lay at the center of this frequency range, we find
that the mother 15 responding to the baby with a
tune delay of less than 1 sec Thus, for dyad 2
we could hypothesize that there 1s evidence of
strong cross-correlation, but that once agamn 1t 1s
the mother who responds to the baby, that 1s, the
direction of influence 15 asymmetnc Once agam,
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we must correct for autocorrelation to test this hy-
pothesis

The third dyad 15 much more difficult to ana-
lyze spectrally The spectral densities do not ap-
pear to peak together (see fig 9) The coherence
15 lugh near f = 04, where the baby 1s cychng
strongly but the mother 15 not, and near f = 20,
where the opposite 15 true (see ig 10) At f= 04
the time delay 15 —2 20 sec, and at f = 20, the time
delay 15 —0 60 sec, which suggests that the baby fol-
lows the mother Ths 1s interesting, but we must
be cautious in directly mterpreting the phase spec-
trum The frequency f = 20 cps corresponds to a
cycle with a period of 5 sec Thus a time difference
of — 8 sec could also be interpreted as a delay of
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—6+4+5=44 sec or —6—5=-—-56 sec It 1s
not clear which 1s appropnate

With this descniptive insight we now ndicate
how we can use spectral analyses for time-domain
model building

Examnation of the spectral densities suggests
the number of autoregressive terms that will be
necessary For dyad 1, the mother’s spectrum shows
two peaks and the baby’s spectrum shows four,
suggesting, for this dyad, A =4 and C =8 Smm-
larly, for dyad 2, A =8 and C =4, 6, or 8 appear
reasonable Thus, we wll start the step-down pro-
cedure at shghtly larger values, A =C =10

Preliminary estimates of B and D are derved
from the phase analysis Recall that in dyad 1 we
found the mother responding to the baby with a
5-sec delav This suggests that B will be at least
5, but it says nothing about D Indeed, we have
no spectral mdication about the baby s response to
the mothers past behavior Simlarly, for dyad 2,
we find that B will be at least 1 with no evidence
as to what D mav be Dvad 3 gave ambiguous re-
sults for the time delay, since it was not clear
whether the partners were synchronous or whether

M,
M,
Y =

Mr
I

M, M_,

M, M,

X =
Mpr., Mr;
L Mry My,

there was a delay, either way, of about 5 sec Thus
we should take B and D to be at least 5 For safety,
we started the step-down procedure agamn at the
larger values of B= D = 10

Appendix C
Mathematical Details

In this appendix we relate the procedure de-
scnbed generallv 1n the text to the matnx formula
for multiple regression and then develop the lLikeh-
hood ratio tests we propose

Matrix Formulation of the Models
The basic model,

4 n
M, = Z;G;Ml—. + Zb,B,_, + e,
r= =1

where t = 1, 2, . T, and (allowing for “start-
up observations Mo, M., M., ), can be re-
written 1n matrna form as Y = X6 4+ E, where )Y 1s
the observation vector, ¢ the parameter vector, and
X the design matnx

- M
a
a
9 =
(7}
b
L bB J
M]-A Bo Bl—B ]
Mz_A B) Bz_a
Mr_y_a| Brs Br_i1-m
Mp_a Br_ Br_g U




which has the farmhar least-squares parameter esti-
mates, & = (X’X)-* XY 1In large samples, these
estimates have approximately a normal lstnbutmn
with mean # and vanance-covanance matnx o,2
(X’X)-1! where 0.2 15 the vanance of the e:’s

This vanance 1s eshmated by the usual mean
square error, as shown at bottom of page below
For the discussion of the Likehhood ratio tests, it
will be convement to imtroduce the symbol &.2 for
the estimate of vanance with 1/T weighting 5.2 =
SSE:T

All of this 1s nearly the same as the usual
multiple-regression setting, and, at least in large
samples, the same methodology apphes

The estimates of the ¢’s and d’s for describing
the babf/’s behavior are handled identically and

separately, using
¢ — 14 -1y
[d] = (X'X)'X'Y

where 1n X and Y the roles of M and B are mter-
changed and C and D replace, respectively, A and
B

Likelthoad Ratio Tests

The likelthood function for a stahistical model
15 the jomnt probability density of all the random
observations, considered as function of unknown
parameters If we let Li(M,a) denote the hkeh-
hood function for the smaller model (3) and L.( M,
B, a, b) be the likehhood function for the more
general model (1), then assuming normally dis-
tnbuted errors, we can write

Li(M, B, 4, b)
1 1 = (residuals)?
= Gy ﬁ, exp — [“_-——_2&,2 ] cH

oting that Z(residuals)2 = T42, this reduces to

L,(M,B d 4, 6) = (constant) ——— (C2)

()7

or, denoting the natural loganthm of ths multl-
phcahve constant by F, In L.(M, B, d, b) =

T In 6. Sumlarly, with F denoting the same con-
stant,

§2 =

T = (A T-(A+B) & (M‘

i
“TI AT

= (SSE)/(T - (4 + B))
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Li{M,4) =F -~ Tlnés>, (C3)

where @.° 15 computed using the SSE from the
model 1n equation (3)

Let R be the lkehhood ratic Li/L: If the
smaller model 1s true, then Q = —2 In R which
can be convemently expressed as the difference
(2T In 3.°) — (2T In 8.) 1s asymptotically dis-
tributed as xo-2, with DF equal to the difference n
the number of parameters in the two models This
allows a companson of the two models and, if the
smaller model 1s inadequate, gives a measure of 1its
madequacy In particular, this gives a test whether
bi=b = = bs = 0 and whether di = d. =

= du =0

Note also that we assumed normally distnibuted
errors 1n the construction of this test Although this
provides a justification of the test, the asymptotic
x2 distbution holds without normaht) thus this
procedure will still give vahid results

Reference Notes

1 Stephenson, G Personal communication, No-
vember 1979

2 Stern, D Personal commumcaton, June 1979
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