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GOTTMAN, JOHN M , and RINGLAND, JAMES T The AfudysK of Dominance and Btdtrectionaltty
m Social Development CHILD DEVEH^OPMENT, 1981, 52, 393-412 This paper is a reexamination
of 2 concepts that have played a role in the direct observation of social interaction and the
study of social development, namely, the concepts of dominance and bidirectionahty This pa-
per argues that a reconceptualization based on the sequential character of social interaction
would add much theoretical clant> to these 2 concepts In this paper the sequential nature of
social interaction is addressed by applying time-senes analysis to redefine (as a function of
social context) the concept of dominance as asymmetry in predictabihty in the behavior of 2
interacting lndividuab The potential benefits of this redefinition are then discussed in the con-
text of hterature on children s social behavior with their peers Bidirectionahty in social inter-
action, defined as symmetrical predictabihty in behavior, is then discussed m the context of
parent-infant interaction A serious methodological problem is then raised, namely, the problem
of autocorrelation in each person's behavior m making inferences about cross-correlabon be-
tvkeen people Mathematical models and corresponding statistical procedures are presented to
solve this problem Procedures are discussed that adiess the concepts of cychaty within a
person an<r synchromctty between people who are interacting and that assess asymmetrv and
symmetry (l e , dominance and bidirechonalitv) in social interaction Previously published data
on mother-infant play is then reexamined to illustrate the practical use of this approach These
techniques are, however, completely general for mfemng relationships between 2 variables that
change with time and thus mav provide a foundation for the study of other developmental
problems

There is a rapidly growing interest in the objective of the paper is to reconceptualize two
study of social development using observational concepts that have played central roles in the
methods, and this interest spans many areas of study of social interaction and social develop-
developmental psychology, for example, ethol- ment—dominance and bidirectionahty A sec-
ogy (see Wilson 1975) and developmental °"^ objective of this paper is methodological
studies of parent-child interaction (see Stem Inference about cross-correlahon between two
1977) There is also an increasing recognition variables that change over time must allow for
of the inadequacy of frequencies or rates of autocorrelation within each series The general
specific social behaviors for summarizing data -^^ ^''^ "̂  time-re ated senes has been exten-
on social interaction and, consequently, a new f^^J^ T Q 7 ? 7 J ' ^ ; . w"'""^<i«7' A \

f ., j . ^ , J ^ ^ Jenkins 1970, Jenkins & Watts 1968) and the
concern for the detection of patterns me, Ume ^ ,̂ ^ J ^ ^ ^̂  cross-correlation has been
and the assessment of varieties of interconnect- ^j .nterest to econometrics for at least 10 years
edness between two interacting individuals ^^ee Pierce & Haugh 1977) This paper pre-

sents an approach that combines several such
The study of data over time is ideally concepts into one integrated method, we vnll

suited to time-senes analysis, and this paper attempt to explain this method with a minimum
will argue that considerable theoretical clarity of mathematics Denvations, where needed,
can be obtained using time-series concepts One will be given in Appendix C
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Dominance
The concept of dominance has been oper-

ationalized m many ways and applied to an
enormous range of social phenomena In this
discussion we refer only to dominance concepts
designed to characterize social interaction rather
than the traits of indi\iduals Concepts de-
signed to study the former are usually specific
to group composition and situational context,
and this is the sense in which we are interested
m dominance

By dominance, researchers always refer to
some asymmetry usually m the frequency of
some specific variable designed to operational-
lze the dominant behavior For example, m re-
search on family interaction, Hethenngton and
Martin's (1972) review hsted these variables
who speaks first, who speaks last, and passive
acceptance of a solution on a problem-solving
task Jacob (1975) listed talk time, number of
statements, number of successful interruptions,
and number of all acts Asymmetry on one or
more of these variables is always the basis for
a decision about dominance

There are several problems with defining
dominance as asvmmetiy in these rates or fre-
quencies First, the definitions assume that an
isomorphism exists between dominance and
asymmetry in the relative frequency of a spe-
cific behavior, however, m some families the
most dominant member may be a person who
does not speak very often, who rarely inter-
rupts, but who has great impact when speak-
ing For example, if a dominant member makes
a demand, subsequent compliance by others
might be more likely than is the case with less
dominant members In this case we would ex-
pect the asymmetry to be detectable in patterns
of interaction rather than m the relative fre-
quency of a specific code, which is a mean over
time

A second problem with these definitions of
dominance is that dominance may not be de-
tected m one variable but in overall patterns
across several variables At first glance this
problem may seem reasonably trivial, however,
historically, the selection of the appropriate
variables has been a serious problem For ex-
ample, m the ethological hterature on the natu-
ralistic observation of animal behavior, domi-
nance has been defined in terms of asymmetry
in resource utilization, temtory, freedom of mo-
bility, and the successful outcomes of aggres-
sive bouts One promising variable for assessing
dominance would appear to be the outcome of

aggressive bouts over competition for the utili-
zation of resources However, in naturalistic
observation of intact social groups, these events
have been difficult to observe for several rea-
sons First, one of the functions of a dominance
structure is to minimize aggressive encounters,
and they are thus infrequent Second, as Wilson
(1975) noted "Serious difficulties m the domi-
nance concept appeared as soon as the idea was
extended to the more complex life of primates

Some writers then recognized that in both
primates and wolves a rich repertory of signals
IS used to denote status in a manner not di-
rectly coupled with aggressive interactions
Status signs were seen to be metacommunica-
tive, indicating to other animals the past history
of the displaying individual and its expectation
of the outcome of any future confrontations"
(p 281) There is also some evidence that
highly "telegraphed" dominance behaviors, that
IS, the abbreviated vestiges of previouslv more
elaborated sequences of actions, are used to
remind a subordinate of its status Stephenson
(Note 1) found evidence for an idiosyncratic
"dominance dialect" in a particular alpha male
in a group of rhesus monkeys The alpha male,
the most dominant member, had an unusual
spastic motion of his arm out to one side When
he died, the new alpha male, who had never
been observed to display this behavior, began
doing so To test the hypothesis that this be-
havior IS associated only with the most domi-
nant animal, Stephenson removed this animal,
and the new alpha male also adopted this be-
havior, as if it were the scepter of command
Often, the specific behaviors that represent the
"dialect of dominance and submission" are
present but are subtle and difficult to detect
For example, Shirek-Ellefson (cited m Cheva-
lier-Skolnikoff 1973) noted that the threat dis-
plays of Macaca fasctclarts are open-mouthed
stares if the animal is dominant and bared-
teeth stares if the animal is subordinate

Attempts to extend the notion of a domi-
nance hierarchy to human groups revealed that
dominance was even more complex for human
than for primate groups For example, it is pos-
sible to estimate hierarchies using asymmetry
m the outcomes of aggressive encounters of
preschool children (McGrew 1972, Strayer &
Strayer 1976) by employing linear models
(with varying degrees of success), but as
Vaughn and Waters (1978) pointed out, "Dis-
satisfaction with the umdimensional concep-
tualization of social organi2ation stems pnman-
ly from the fact that 'dominance' rankings
based on the outcomes of aggressive encounters



have not proved very revealing with respect to
other aspects of behavior" (p 360) Vaughn and
VVaters's study of one nursery school class found
that hnear models of a dominance hierarchy
based on two different types of aggressive so-
cial encounters—(1) gazing and hostility and
(2) object struggles—were not significantly
correlated, r = 20

We wish to propose that an alternative to
searching for asymmetry in the rates or relative
frequencies of specific behaviors that are as-
sumed to reflect dominance is to operationahze
the concept of dominance as asymmetry tn pre-
dictability, that IS, if B's behavior is more pre-
dictable from As past than conversely, A is
said to be dominant This is a definition that
could span a range of behaviors, and asym-
metrv in the predictability of these behaviors
could reflect dominance patterns even if the be-
haviors themselves do not The behavior of the
alpha male should be less predictable from the
behavior of the beta male than conversely, in
general, it is the beta male who must attend to
and respond to the behavior of the alpha male,
and not conversely

Recent theorizing on dominance supports
our proposed definition of dominance An at-
tempt was made recently to extend the domi-
nance concept beyond the arena of aggressive
interactions Chance suggested that the asym-
metrical patterning of attention, usually as-
sessed by visual gaze, could be used as an index
of dominance even in nonaggressive encounters
(Chance 1967, Chance & Jolly 1970, Chance
& Larsen 1976) This suggestion is entirely con-
sistent with the asymmetrv-in-predictability
definition, although the predictability definition
IS more general, for example, the measure could
be excitement or activity levels during play as
well as gaze

However, there is an important limitation
of this equation of asymmetry in predictability
with dommance For example, m caretakmg
interactions, the fact that a mother's behavior
is more predictable from her baby's behavior
than conversely may be purely a function of
the caretakmg context, in play interactions the
•same asymmetry mav be indicative of the
social/cognitive developmental level of the in-
fant If a mother waits for her baby to be inter-
ested in play and her behavior is thus highly
predictable from her baby's, but not vice versa,
it does not make much sense to refer to the
baby's behavior as "dominant" in the same
sense as an alpha male monkey's aggressive be-
havior toward a beta male may be called domi-
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nant Another example may strengthen this
point Vaughn and Waters (1978) found that
among preschool children, visual gaze data
taken during free play indoors did not correlate
significantly with data on aggressive social en-
counters, although the gaze data were highly
correlated with peer picture sociometric data
on likmg, which measure a child's preferences
in affiliation with peers m that social group
In other words, children tended to look most
at those children with whom they would prefer
to plav but with whom they usuallv did not
play In short, asymmetry m predictability need
not always imply dominance Dominance is a
function of the mteractants and of the situ-
ational context of the interaction The concep-
tual label given to asymmetrv m predictabil-
ltv should thus varv as a function of the de-
pendent measures, the context ( e g , the goals
and tasks of the interaction), and the nature
of the mteractants "We can distinguish four
major contexts that have been studied in social
interaction (a) caretakmg ( e g , mother-infant
feeding), (b) plav ( e g , mother-infant play,
peer play), (c) competition ( e g , object strug-
gles among preschool children), and (d) coop-
eration ( e g , decision making or problem solv-
ing in families) If an observational study sam-
ples from different social contexts, one need not
predict a priori that the same dimension would
be tapped by asymmetry in predictability, even
if the same variable (such as gaze) were used

While dominance alwavs refers to an
asymmetry, symmetry m predictability may also
be theoretiealK interesting For example, it may
be profitable to identify that point in a child's
development when its interaction with its
mother becomes bidirectional The bidirection-
ality implies that the mother is responding to
her baby and that the baby is responding to the
mother In fact, in the developmental literature
there has been lively discussion of bidirection-
aljty and we will review this discussion

Bidirectionality

Bell's (1968) paper on the bidirectionality
of effects in research on child rearing led re-
searchers of parent-infant interaction to begin
viewing their observational data as bidirection-
al This changing view of the infant's capability-
was made possible by research in the 1960s
that found the infant's repertoire much largei
and more sophisticated than had been expected
( e g , Fantz 1964) To understand the nature
of this breakthrough we need to recall that the
historical context for the renewed study of
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parent-infant interaction in the late 1960s was
personality theory and that as late as 1965
Handel wrote a review paper suggesting that
the central developmental issue in this area was
to understand to what extent the child s person-
ality IS predictable as some linear combination
of the parents' personalities The shift to a
model of an active infant was a shift toward
a .systems view of development, it was not just
that the infant was not a tabula rasa, but the
mfant had a piece of chalk of its own The shift
also included the movement toward mcluding
the study of psychological processes ( e g , so-
cial interaction) as well as developmental out-
comes ( e g , personality and cognitive levels)

The developmental issue is the nature of
bidirectional social interaction and its implica-
tions for the infant's developing social compe-
tence To understand this point, consider the
fact that it IS apparently irresistible for re-
searchers not to speak of the mfant's behavior
as intentional, planful, and goal oriented For
example. Stem (1977) wrote, "Beginning
around the third month, the smile takes another
developmental leap and becomes an instrumen-
tal behavior By instrumental we mean simply
that the infant will now produce the smile m
order to get a response from someone, such as
a return smile from mother or a word from her
The smile itself, howeyer, still looks the same"
(p 45, emphasis added) We suggest that what
may haye changed in the infant's smile by 3
months is neither the smile nor the mother's
response to the smile but the abihty to predict
when the baby will smile from the mother's be-
havior The deyelopmental leap may thus be
the occurrence of btdtrectionahty tn predtct-
abiltty

Bidirectionahtv has also been studied m
pioneering research by Brazelton and his col-
leagues ( e g , Brazelton, Koslowski, & Main
1974, Tronick, Als, & Brazelton 1977) In this
research the behayiors of mother and infant are
recorded by two cameras and merged on a split
screen with a time code that makes it possible
to code a 5-min play session m slow motion or
frame by frame This detailed quantitatiye anal-
ysis of nonyerbal behayior was a major break-
through m this area An additional breakthrough
was the univanate scahng of the microcodes on
a dimension of affectiye involyement The de-
tailed microcodes were categonzed into "mo-
nadic phases" that were then scaled on a di-
mension that ranged from maximum negative
involvement to maximum positive involvement
and excitement This scaling made it possible

to examine overall patterns in interaction that
might not have been tapped by one isolated
code, and it simultaneously gave specific be-
havioral referents to the scale (see Brazelton
et al 1974) Tronick et al (1977) observed
three mother-infant dyads and summarized
their analyses by the time-series graphs dis-
played as figure 1

The objectives of subsequent analysis of
the Tronick et al (1977) data were (1) the
detection of cyclicity m both mother's and in-
fant's affective involvement, (2) the detection
of synchronicity in a dyad's behavior, and (3)
the detection of bidirectionality To accompbsh
these objectives, Tronick et al (1977) com-
puted correlations between mother and infant
scaled scores, each correlation was based on 10
sec of interaction, the first correlation was based
on seconds 1-10, the second correlation on
seconds 2—11, and so on (see fig 2) They
wrote, "High positive correlations would indi-
cate that the mother and the infant were syn-
chronously moving in the same affective direc-
tion, high negatiye correlations that they were
changing their affectiye myolvement in oppo-
site directions, and low correlations, either posi-
tive or negative, that there was a general lack
of relationship or lack of cycling between the
changes of their affective lnvolyement" (Tro-
nick et a l , p 77) Tronick et al (1977) re-
ferred to positiye correlations as "synchrony"
and conclude that "the analysis of the scaled
sum scores shows that the infants are capable
of modifying their affectiye and attentional dis-
plays in a reciprocally coordinated manner" (p
78) Furthermore, "the infant is able to com-
municate his or her intent and to respond to
the expressed intent of the mother He or she
can sequence expressive displays m an appro-
pnate serial order while allowing for the turn
taking necessary to the reciprocal exchange of
messages" (p 79) To summarize, Tronick et
al were thus interested m making the following
conclusions (1) that mother and infant play
IS synchronous and reciprocal and (2) that the
infant is responding to the mother, that is, that
effects are bidirectional From these conclu-
sions they hoped to construct models of the
infant's social competence

Unfortunately, it is not jrossible to support
these conclusions from the running correlations
If the mother and infant's behavior were en-
tirely cyclic, with unequal frequencies, the be-
havior of each would be completely determined
by Its own past and no knowledge would be
gamed by knowing the behavior of the other



This IS a case of no interaction Nonetheless,
the Tronick et al running correlations would
be nonzero The mother's and baby's cycles
would be successively m phase (giving positive
correlations) and out of phase (giving negative
correlations) This fact is not difficult to prove
mathematically *
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One might, at first glance, suppose that
the problem is that Tronick et al only examine
some of their cross correlations, that is, only
those at lag zero, and only for part of the data
at a time However, this is not the core of the
problem in inferring bidirectionality What
needs to be demonstrated is more dian that

n (0
TIME (

ns no ns
I)

Fic 1 —Scaled sum scores for each of the infant-mother dyads The scores range from maximal posi-
tive involvement in the interaction through neutral to maximal negative involvement in the interaction for
the infant and mother

| o

lynch rony

we IK) wo

FIC 2 —"Ten second 'running' correlations of infant and mother scaled sum scores Each bar is the
correlation of ten seconds of scaled scores for infant and mother The correlataon moves m 1 second jumps
Thus, the first correlation is for seconds 1-10, the second for 2-11, the third for 3-12, and so on \
high positive correlation reflects maximum synchrony in the interaction and a high negative correlation rep-
resents maximum disynchrony" (from Tronick et al 1977)

' If the mother's behavior cycles at frequency M and the baby's at frequency B, the Tronick
running correlahons can be wntten out mathematically and shown to he cyclic with several
"modulated" cyclicities, depending on the mother's and baby's cycles DiJFerent patterns in the
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predictability (at any lag) exists from mother
to infant and from infant to mother Bv itself
this demonstration is inadequate to infer bi-
directionality because of the problem of auto-
correlation This was recently pointed out bv
Sackett (1980), who wrote, 'The basic issue ot
autocontingencv has not been addressed bv
students of social interaction UnfortunateK
autocontingencv does affect the degree to which
crossldg dependencies can occur In some in-
stances, apparent cross contingencies may be a
total artifact of strong autolag functions' (p
330) Sackett's point is consistent with Jenkins
and Watts (1968), who showed that "ver)
large cross covariances, all of them spurious
can be generated between two uncorrelated
processes as a result of the large autocovari-
ances iLtthm the two processes ' (p 338)

To demonstrate that the behavior of the
baby is influenced bv the behavior of the
mother, this paper suggests that we need to
show that we can reduce uncertainty tn the
infant's behavior from our knowledge of the
mother'^ past behavior, aver and above our
ability to predict simply from the infant's past
A similar discussion can be found in a recent
paper by Pierce and Haugh (1977) on assess-
ing causal relationships between economic time
series Bidirectionality occurs when we can
demonstrate the converse as well, and asym-
metry in predictability occurs when we cannot
demonstrate this svmmetry

We will now discuss the techniques of
time-series analysis that address each of the ob-
jectives of the "Tronick ct al (1977) paper We
begin with a discussion of stationarity, of the
need for describing the data in such a way that
the same patterns of relationship hold through-
out the series, we continue with the detection
of cyclicity and synchronicity, and, finally, we
develop the mathematical models and signifi-
cance tests for assessing bidirectionality The
mathematical discussion of the mother-infant
data presented in the remainder of this paper
IS completely general and applicable to other
types of social interaction However, as we have
pointed out the conceptual interpretation of

the statistics may vary with interactional con-
text These analvtic methods are currently being
applied in our laboratory to affective expression
in marital interaction, in which asymmetry is
best interpreted as differences m emotional re-
sponsiveness, and to asymmetry in gaze proba-
bilities in sibling interaction, in which asym-
metry IS interpretable as dominance To con-
serve space, we will not present data taken
from these interactional contexts but will limit
our discussion to mother-infant interaction

Detecting and Correcting for
Nonstationarity

Time-series analysis assumes that the data
are stationary, that is, that the data varv about
a fixed mean and the same pattern of auto- and
cross-covariance holds independent of historical
time Moreover, timL-series analysis, like any
other statistical analysis, requires a certain
amount of replication and repetition Thus, for
the data to be usefully analyzed, the length of
the series should be considerably longer than
duration of the important auto- and cross-corre-
lational effects being analyzed However the
data may not be stationary, and, indeed, the
presence of nonstationarity may be one of the
most interesting facets of a set of data At the
simplest level there may be general trends—
linear, seasonal, or otherwise—in the data
There may also be local trends—up for awhile,
then down, then perhaps level Patterns of cor-
relation may change, especially at the begin-
ning of a record as patterns just begin to assert
themselves, or at the end as they decay Or
there may be some constant change m auto-
correlation and cross-correlation through time

When the original data are nonstationarv,
several alternatives exist, we will review two
(see Chatfield [1975] for another) First, it may
be possible to divide the data into successive
chunks, such that the data are reasonably sta-
tionary within each chunk Second, the data
may be transformed so that the transformed
data are stationary Box and Jenkins (1970)
suggested that the difference from observation

running correlahons could be obtained by suitably modifying B and M Nonetheless, the mother
and babv in this example could not be called interactive, their non2ero correlations are purely
an artifact of their cychcity By modulated cychcities, the foUovnng is implied The sum of two
sine waves with frequencies G and H can also be wntten as the product of two fames a sine
wave with frequency (S)(G-|-H) and a cosine wave with frequency (/i)(G—H) This means
that the sum is not a simple sine wave but "modulated" as follows It has a new frequency,
which IS the average of those in the sum, and a nonconstant amplitude that vanes rhythmically
with slower frequency [{%)(C—H)'\ These rhythmic changes m amphtude are called beats
For an illustration, see Courant and John (1965, p 581)



to observation (the slope), or perhaps the dif-
ference of the differences (the acceleration),
may be stationary The differencing transforma-
tion creates a new time series, y,, from the orig-
inal time series, x,, by the transformation y, =
X, — X, _j , so as to produce (/_. = x_> — ccj, l/n =
t) — x_,, j/4 = X4 — x ,̂ and so forth Thus, in
anv time-series analysis we must first examine
the data carefully and either divide the data
into separate stationary pieces or, to the extent
necessary, transform the data so that the trans-
formed data are stationary

The issue of nonstationarity is complex,
and a full discussion is not possible in the space
of this paper (the reader is referred to Box &
Jenkins [1970] and Chatficld [1975]) However
we can note here that the autocorrelations can-
not be consistently large for stationarity be-
cause this suggests that long-term polynomial
trends exist in the data which will necessarily
make the autocorrelations insensitive to local
temporal variation The long-term trend can be
removed by differencing an appropriate num-
ber of times (Box & Jenkins 1970) or by esti-
mating the polynomial trend and subtracting it
out (Chatficld 1975)

Detection of some forms of nonstationaritv
IS rather easv The estimated autocovariances
of a stationary time series die out rapidly,-'
hence, as a rule of thumb, if the autocovari-
ances show any consistent pattern for lags over
T/6, where T is the number of observations,
nonstationarity is suggested The figure T/6 is
a rule of thumb proposed by Box and Jenkins
(1970) The rationale is that estimates of auto-
correlations for large lags are less reliable than
estimates for short lags because they employ
increasingly fewer data points, for lag k only
T — k data points are used It should be noted
that to detect one stochastic cycle of any period
only two lags are needed, not the number of
lags equal to the period flence, extremely
complex combinations of cyclicity can be de-
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tected with T/6 lags, if T is reasonably large
If consistent patterns are detected in the auto-
covariances, differences should be considered,
the autocovariance function of the series of dif-
ferences examined, and, if necessary, differ-
ences should be taken again Differences will
simultaneously eliminate nonstationarity due to
trends, strictiv seasonal low-frequency compo-
nents, and nonstationarity in cyclicity in the
low frequency ranges

From the Tronick et al (1977) data, a
first differences transformation was necessary to
achieve stationarity * As a representative exam-
ple, the autocovariance functions for the mother
of dyad 3 are shown m figure 3A and B for
both the dctrended original data and for the
"̂ eries of differences Note the patterned large
autocovariances for lags bevond 20 in the orig-
inal data but the smaller and rather random
autocovaiianccs for lags greater than 10 in the
series of differences

The original discussion of the data by Tro-
nick et al also suggests that differencing is
appropriate In examining the running correla-
tions for svnchronicity, Tronick considered
agreement not between the affective levels of
mother and baby but, rather, agreement in how
tlwy were moving or, equivalently, how well
the differences between successive observations
agreed Thus, considering differences is a direct
extension of the original Tronick et al (1977)
analysis although we also consider autocorrela-
tion and cross-correlation at larger lags

Detecting Cyclicity and Synchronicity

It IS no* uncommon for researchers who
study social interaction to comment on the
periodicitv and cychcity of social liehavior and
to sense intuitively the need for analytic meth-
ods to detect these patterns In fact, cycles and
synchronicity are particularly interesting to re-
searchers of parent-infant interaction However,

-' To detect non>tationantv, the spttd with which the autocorrelations, r,, die out (decrease
to 7pro) viith increasing lag, k, can be ustd A useful rule of thumb is that fi-' should decrease
faster than \/k", whtrt a > 1 Periodic increases in n suggest a nonstationary deterministic
cycle, which should he removed frnm the data (sec Chatfield 1975)

I The Tronick et al data were, on doser examination, nonstationarv for a reason not sug-
gested in the general discussion Examination of the spectral density function (see p xx) com-
puted for the first and second halves of the data indicated that, as the plav progressed, the
cyclicity became faster This result is consistent with observations made hv Daniel Stern (Note
2) that as the play progresses, the infant's and the mothers tempo increases Because the
greatest difference between the two halves of the data were in the slowest cvcbcities, after dif-
ferencing, this effect was not verv large Nonetheless, this check for nonstationarity revealed
some new information about the data Thus, a general recommendation is that, although trans-
formations can eliminate many forms of nonstationanty, it can he extremely informative to
model the nonstationanty so that the precise work performed hy the transformation is. revealed
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LAG

FIG 3 —Comparison of autocovanances for the
detrended (A) with the differences (B) Tromck
et al (1977) data, dyad 3, mother Lag is in sec-
onds

researchers have tended to be frustrated in
summarizing their data, and instead they have
rehed on metaphors that create a veneer of
time-series language For example, Condon and
Ogston (1967), using slow-motion film, under-
took the frame-by-frame microanalysis of 15
min of the dinnertime interaction of a father,
mother, and son They wrote, "We are dealing
with ordered patterns of change during change,
which exhibit rhythmic and varying patterns m
the temporal sequencing of such changes Meta-
phoncally, there are waves within waves withm
waves, with complex yet determinable relation-
ships between peaks and the troughs of the
levels of waves, which serve to express orga-
nized processes with continually changing re-
lationships" (p 224) This bewildering array
of metaphors is an excellent intuitive prologue
to spectral time-senes analysis methods

In a recent paper, Gottman (1979) re-
viewed the methods of spectral time-series anal-
ysis for detectmg cychcity in social interacbon
The reader is referred to that paper for details
on analyzing time-senes data for cychcity and

synchronicity in social interaction We com-
pleted a spectral analysis of the Tromck data
and recommend such an analysis for estimabng
the initial values for the number of parameters
necessary in the models we will recommend in
this paper The spectral analysis of the Tromck
data IS useful for increasing the eflBciency of
the time-senes analyses but, technically, is not
absolutely necessary To conserve space, and to
simplify our discussion, we present these spec-
tral analyses m Appendix B By themselves the
spectral analyses are inadequate to test for
dominance and bidirectionahty because auto-
correlation must be controlled m inferring cross-
correlation

The Analysis of Bidirectionality
To augment the frequency domain anal-

yses, it IS essential to construct mathematical
models in the time domain that control for
autocorrelation m the data m the assessment of
cross-correlation Fortunately, there is a prece-
dent of model building that we can call upon
m the time-series literature We will apply the
transfer function models proposed by Box and
Jenkins (1970) If the mother's time-senes m
figure 1 IS denoted M, and the baby's series by
B(, we will wish to write a model in which we
first try to account for as much of the variance
in each series by knowledge of its past and then
determine how much we can improve this re-
lationship by adding knowledge of the past of
the other series Stated mathematically, this
model IS

,., -f
and

23
1 . 1

C

t.i

D

,_. 4- e,, (1)

(2)

where we assume that et and tit are mdepen-
dent, normally distnbuted with means zero and
vanances (T/ and a^^, respectively We will de-
velop a maximum-hkelihood procedure for test-
ing the bidirectionahty hypothesis After a con-
ceptual discussion in the main text, we shall
present an example of the actual analysis, with
the necessary SPSS programs, to illustrate the
implementation of these ideas

To summarize the mathematics in English,
one way of thinking of the model is to transfer
the first summation on the right-hand side of
each equation to the left-hand side The model



thus attempts to predict the residual from an
autoregresswn on each series from the past of
the other series The innovation processes e,
and nt are the residuals of this prediction If
there is no gain in this prediction, this means
that a smaller autoregressive mode! without the
past of the other series is adequate We thus
seek tests for comparing smaller models with
bigger models Because of autocorrelation we
will not be able to derive exact F-rabo statis-
tics, but we will be able to develop likelihood
ratio tests with asymptotic distribution theory
These tests are generalizations of the univariate
procedure discussed m Anderson (1971) Pierce
and Haugh (1977) discuss this model, although
their analysis differs slightly

There may appear to be an indeterminacy
in the model The mother's behavior depends
nn her own past as well as on the baby's past,
which m turn also depends on the mother's
past However, because of the assumption that
the mother and baby are introducing indepen-
dent innovations e, and n,, there are unique
estimates for all parameters Moreover, the esti-
mates of the a,'s and b's do not depend on the
c,'s or </,'s, so equations (1) and (2) can be
handled separately The proof of this assertion
IS available on request from the first author

We will apply a least-squares procedure
originally proposed by Mann and Wald (1943)
for estimating the fl, and fc, for a given A and B
conditional on "start up" observations Mj, M_,,

, A/_^ + , and Bo, , B.,,., The first A
or B observations (whichever is larger) at the
beginning of the play sessions are thus treated
differently from those once the session is estab-
lished The parameter vector for the a,'s and b,'s
IS estimated bv ordinary least-squares regres-
sion ^ The residual mean square error a/ will
be estimated in the usual way Details are given
in the Appendices to this paper

We will fit a model with A and B larger
than necessary and test at the 1056 level whether
fli = 0 or h,, — 0 Note that this is not the
usual hypothesis-testing situation We wish to
include terms if there is any evidence at all that
they are nonzero Thus, we use the analysis
informally, we choose the alpha level to be
rather large and do not worry about mulbple
comparison problems If a^ = 0 or fcg = 0 we
fit a smaller model and repeat the testing and
thus step-by-step reduce the model to appro-
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priate size to find the best full model to de-
scribe the series

Employing the least-squares estimation
procedure reduced "null hypothesis" models
lor the mother's and the baby s behaviors,
which assume no interaction can also be fitted
In this case we have a reduced model m which
the only terms we consider are the past of each
series, terms from the other series are dropped
out Stated mathematically, this is

y l *

Af, =

and

(3)

(4)

A new pair of estimates for the variances of e,*
and n,*, namely, {ag')^3iad (»„*)2, respective-
ly, can be found To test whether the cross-
regressive terms in the final models of the form
(1) and (2) significantly help predict the
mother's or baby's behavior, we will compare
model (1) with (3), using the same value for
A and A°, and model (2) with (4), using the
same value for C and C, with the likelihood
ratio test procedure described below This is
the more usual testing situation, and we will
require significance at the 5% level before as-
serting that the cross terms do contribute, that
one series is partially predictable from the
other Figure 4 gives a summary of the four re-
gions that are possible outcomes of these tests

ASYMMETRY BIDIRECTIONALITY

M - » B

MODELS HOLO (I )8(4) MODELS HOLD(I )al2)

NO INFLUENCE

MODELS HOLO (3)a(4

ASYMMETRY

MODELS HOLD(S)a(Z

FIG 4 —Four quadrants illustrating bidirec-
tionality, dominance (or asymmetry m predictabJ-
lty), and no interaction for two individuals, M
(mother) and B (infant)

* Differencing can be suggested by the least-squares autoregressive parameters, e g , if
Qi = 1 0, or IS close to 1 0, first differencing may be useful
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If B -» M denotes that the mother's behavior is
predictable from her mfant's, then region 2
represents bidirectionahty, and regions 1 and 4
represent asymmetry In another context these
two regions could represent dominance pattern-
ing

In addition, we will want to compare
models of the form (1) and (2) with differ-
ent A, B, C, and D to check whether, overall,
the initial term-reduction procedure was justi-
fied and to compare models of the form (3) or
(4) with different A' and C° to check whether
additional terms in a purely autoregressiv e
model give a significantly better fit Neither of
these two tests should give significant results
Thev are internal checks on the vahditv of the
procedure

Each of these model comparisons is car-
ried out using the followmg likelihood, equal
to /2 In (error sum of squares/T), where T is
a number of observations (not the degrees of
freedom for error) If we have two models, one
a reduction of the other, the reduced model
then adequately describes the data, then the
statistic, denoted Q, which is — 2T times the
difference in log likelihoods, has approximately
a ^- distribution, where the degrees of freedom
IS the difference in the number of parameters
between the full and the reduced model If Q
IS too large, we have evidence that the larger
model IS more appropriate than the reduced
model We refer the reader to Appendix A for
a specific numerical example and to Appendix C
for theoretical discussion of this procedure

In all models compared we are assuming
implicitly that T is unchanging Our procedure
will be to establish the first 10 terms of each
series as start-up observations (so time = 1 is
the eleventh observation) This is not mathe-
matically necessary The same likelihood ratio
tests apply with different T's, and we could
take only as many start-up observations as
needed m any particular model—more for
models with more terms, less for shorter mod-
els—but we then have some diflBculty inter-
preting results about slightly different stretches
of data

For the Tronick et al (1977) data, it was
also necessary to truncate the data, tossing out
the last observation of each series The last ob-
servation was usually uncharacteristic of the
pattern in the data, representing the end of the
interaction (see fig 1, interactions I and III)

To summarize, we suggest the following
time-domam analysis for each of the six series

(mother and baby in each dyad) (l) Using
spectral estimates (see Gottman 1979), guess
appropriate values of A, B, C, D, (ii) starting
with slightly larger A, B, C, and D, step by step
remove terms to find an appropriate model of
the form (1) or (2) , (in) compare the model
in n with the one of the form (3) or (4)
where A' and C° are the \alues in the model
computed m li, and (lv) compare the reduced
model in in with one with larger A* or C°
to check that additional autoregressive terms
do not help

The data requirements for the time-series
analyses proposed in this paper are (1) data
that are stationary or can be made stationary
and (2) a stretch of data long enough so that
interesting autocorrelational patterns are shorter
in duration than the data, which usually would
imply at least 150 data points The data need
not be normally distributed for the log-hkeli-
hood ratio statistics to be distributed asymp-
totically as described If the data are dichoto-
mous as m the case of occurrence/nonoccur-
rence of a particular behavior ( e g , visual gaze
toward other), more than 150 observations are
necessarv to approach asymptotic conditions
whereas if the data are completely normal, the
analyses could be safely conducted with fewer
observations Note that differencing the data
IS not a statistical requirement, the analysis re-
quires only two stationary, potentially related
time series The methods used in this paper
to achieve stationarity were created in response
to the data at hand, other methods might be
more suitable for other cases We will now give
the results of such an analysis on the difiFer-
enced Tronick data

Bidirectionality Analysis o£ the
Tronick Data

The spectral analyses of the Tronick data
provide initial estimates of A, B, C, D for all
dyads to be no larger than eight, hence, con-
servatively, we may start with estimates of
A = B = C = : D = : 10 In practice, if the read-
er does not use spectral analysis, it might be
wise to check some of the larger values for A,
B, C, and D The results of (l) the original
excessively large model with A = B =: C = D
= 10, (n) the step-by-step reduction, (lu) the
model fitted by removing the cross-regressive
terms from u, and (lv) a model with 10 auto-
regressive terms and no cross-regressive terms
are summarized in table 1 For comparison,
the residual variance has also been given for the
observahons without a fitted model The rele-



vant likelihood ratio test results are obtained by
comparing (l) the starting model, (u) the best
auto- and cross-regressive model, (ui) the pure-
ly autoregressive model, and (lv) the enlarged
autoregressive model Recall that the compari-
son of 1 versus li and in versus lv should give
nonsignificant results, being merely internal
checks on our method, while the comparison of
11 versus in will indicate the presence or ab-
sence of predictability of one series from the
other, controlling for autocorrelation

In each case, note that the step-down pro-
cedure behaved as expected and that adding
additional autoregressive terms did not signifi-
cantly decrease the error variance For dyad 1,
we tan assert B —• M, but we do not have suf-
ficient evidence that M ̂ > B Note that, how-
ever, as we have set things up, we assume no
cross relation until it is clearlv demonstrated
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In dyad 2, we have B-^ M with really no evi-
dence at all that M -^ B, that is, no evidence
of bidirectionality This is a case of the mother
very closely following an independent baby
Dyad 3 is both more complicated and more
interesting We clearly have M —^ B, here for
the first time is a baby responding to the
mother In addition, we have evidence at the
5% level that B —* M, that we have indeed a
bidirectional dyad The baby in dyad 3 was the
oldest of the three

Summary

This paper has been a reanalysis of two
concepts in the studv of social behavior, one
involving asymmetry, that is, dominance, and
one involving svmmetry, that is, bidirectional-
ity We noted the importance of the context of
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the interaction and the nature of the mteract-
ants in employing the terms, noted that both
terms imply social mfluence, which could be
assessed by predtctabdtty Consistent vnth this
discussion, we suggested that dominance can
be defined as asymmetry in predictability m
social vanables of importance, and bidirection-
ality as symmetrical predictability We dis-
cussed the conceptual advantages of these defi-
nitions and the usefulness of a method for
quanbtative assessment taken directly from the
stTeam of behavior

We applied time-series analysis in the time
domain for this assessment and noted that the
fundamental assumption of stationanty must
first be considered We mentioned the analysis
of cyclicity and syncbronicity using spectral
time-series methods but pointed out the limi-
tations of this analysis when estimating lead-lag
relationships to make inferences about bidirec-
tionality because these analyses do not control
for autocorrelation We then constructed a
time-domam mathematical model (which may
be assisted by the spectral analyses) and the
statistical tests for assessing whether social in-
fluence exists, and if so, which is the particular
form of asymmetry or bidirectionality

Appendix A
Sample SPSS Calculations

In this Appendix we detail the computations
needed to carry out the proposed analyses The
computations were earned out with version 8 0 of
SPSS as implemented on the University of Illmois
Cyber 175 We shall make use of subprogram
SPECTRAL to obtain the autocovariances and optaon-
al spectral analyses and then use subprogram ii&
GRESsioN for the time-domain analyses If SPECTRAL
IS unavailable, PEARSON COBR can be used, with a
bit more programming difficulty in establishing the
lagged vanables and without the graphical displays
SPECTRAL provides We present the alternative ver-
sion at the end of this Appendix

The analysis proceeds m the following steps

Step A Examine the auto covanances and,
optionally, the spectra for the raw data The code

FILE NAME TRONICK
VARIABLE LIST MOM BABY
INPUT MEDIUM CARDS
N OF CASES 179
INPUT FORMAT FIXED(2F50)

BIVARIATE = MOM BABY/
WINDOW - HAMM1NG(5O)
4,5
1,3,5

SPECTRAL

OPTIONS
STATISTICS
SAVE FILE
FINISH

was used to read the raw data for the first dyad
and to produce auto- and cross-correlations and
spectral analyses Nonstationanty was suggested by
the slow decay and nonrandom looking behavior of
the autocorrelations and by the spectia which were
essentially zero except at very low frequencies

The WINDOW = HAMMINC( 50) indicates
how the spectral analysis is to be earned out The
(50) represents the number of lags used, which m
general should not exceed S to )> of the number of
observations

Step B Take differences if necessary and re-
peat step A Because the pictures in step A did not
appear appropnate, we ran the regression shown at
bottom of page below First, we generate a new
vanable Ml which at time (case) t has value
M._,, DMOM then has value Mr — Mui , and we
repeat the earlier analysis

This time the autocovanances were small and
rather noisy for all but the first few lags, and the
spectrum showed coisiderable structure, both in-
dications of stationanty, so we can proceed to the
time-domain analvses Were this not the case, dif-
ferences could be formed again Note that the
spectra can be used to assist in the following step
(see Appendix B)

StepC Fit the lmtial large model l We il-
lustrate here only the analysis of a mother's be-
havior as a function of her and her baby's past
We need to generate the dependent vanahles using
the LAG operation repeatedly and cany out the
regression, as shown at top of the followmg page
Option 19 fits the regression without an intercept
This IS appropnate for differenced data which

GET FILE
COMPUTE
COMPUTE
COMPUTE
COMPUTE
ASSIGN MISSING
SPECTRAL

OPTIONS
STATISTICS
SAVE FILE
FINISH

TRONICK
M1 = LAG(MOM)
BI=LAG(BABY)
DMOM - MOM - Ml
DBABY = BABY - Bl
ALL(-IOO)
BIVARIATE = DMOM DBABY/
WINDOW = HAMMING( 30)
4,5
1,3,5
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GET FILE
COMPUTE
COMPUTE
COMPUTE

COMPUTE
COMPUTE
COMPUTE

COMPUTE
ASSIGN MISSING
REGRESSION

OPTIONS
SAVE FILE
FINISH

TRONICK
DM1 ::;
DM2 = LAG(DM1)
DM3 = LAG (DM2)

DM10 = LAG( DM9)
DBl=LAG(DBABY)
DB2 = LAG(DB1)

= LAG(DB9)
ALL(-IOO)
VARIABLES = DMOM, DBABY, DM1 TO DBIO/
REGRESSION = DMOM WITH DM1 TO

DB10(2)/
REGRESSION - DBABY WITH DM1 TO

DB10(2)/
19

should have a zero mean If regression is earned
out with the raw data, do not mclude this option

The resulting output provides the following in-
formation First, from the ANOVA table we note
that the residual sum of squares (SSE) was 212 7
This will be used later for the likelihood ratio tests
Second, we use the summary table at the end of
the output to iee which vanables are and are not
significant In this case only DM3, DM4, DM6,
DB3, and DB5 were significant at the 0 1 level

Note that the way missing data are handled hy
this subprogram treats the first 11 cases specially
since lagged values are missing for these cases
DMOM IS missing for case 1, DM1 to DM10 are
missing for case 2, DM2 to DM10 are missing for
case 3, , and DM10 is missing for case 11
However, the values of DMOM for cases 2-11 are
used as lagged independent vanable values in cases
12-21 Thus T, the number of observabons, is ef-
fectively 179 — 11 = 168 This number can also be
obtained as the sum of regression df, 20, and the
residual df. 148

Step D Reduce model l hy a backward step-
wme procedure We remove the "higher-order"
terms a few at a time We noted DM10. DM9,
DBIO, and DB9 were not stgmficant at the last
step, so we try regressing DMOM WITH DM1 TO
DM8, DBl TO DB8, as shown at bottom of page
below

The SELECT IF statement guarantees that we
use exactly the same cases used m step C Without
this statement, this analysis would include two ad-
ditional cases, makmg comparisons between the
model here and m step C harder to interpret

We note from the summary tahle that only
DM3, DM4, and DB3 are significant (although
DB5 IS nearly so) Thus on the next step we at-
tempt a regression of DMOM WITH DM1 TO
DM6, DBl TO DB6 This time, only DM3 and
DB3 are significant, although DB5 and DM4 are
close Next we regre.ss DMOM WITH DM1 TO
DM4, DBl TO DB5 Now we find that DM3, DB3
and DB5 are significant, so we regress DMOM with
DM1 TO DM3, DBl TO DB5 at the next stage
Here, both highest-order terms DM3 and DB5 are
significant, so we stop the step-down procedure and
record the SSE 228 4 The test of the validity of
this reduction procedure involves the two natural
loganthm hkelihoods For the onginal model l we
have T In (SSE'T) = 168 In (212 7/168) = 3 9 62
and the reduced model li T In (SSE/T) — 168 In
(228 4/168) = 51 61 The difference, 11 91, is not
unusually large when compared with x?j cntical
point Note that 12 terms were removed in the
step-down procedure

Step E Testmg for directionality We regress
DMOM WITH DM1 TO DM3 That is, we remove
the baby terms from the final model u above We
note the SSE is 249 6, whence the natural loganthm
likelihood becomes 65 50 The test statistic compar-
ing this model in with model u above gives Q =
65 50 - 51 61 = 14 89, which is larger than the
xli j,j value (We have removed five terms, hence
5df)

StepF Finally, as a check we fit DMOM
WITH DM1 TO DM10 and compare the sum of
squares from this model lv with model in to venfy

GET FILE
SELECT IF
REGRESSION

OPTIONS
FINISH

TRONICK
(DM10 NE -100 )
VARIABLES = DMOM, DM1 TO DM8, DBl

TO DB8/
REGRESSION = DMOM WITH DM1 TO DM8,

DBl TO DB8(2)/
19
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that a larger, purelv autoregressive model would
not significantly improve the fit

If subprogram SPECTRAL IS not available, the
following, somewhat awkward, construction will
produce the autocorrelations for, sav, the mother
series

Ml = LAG (MOM)COMPUTE
COMPUTE

COMPUTE M 30 = LAG (M29)
PE'VRSOX CORR MOM WITH Ml TO M30

Appendix B
Spectral Analysis

In this Appendix we give a bnef overview of
spectral analvsis, of what information these statis-
tics can siippH We then present the results of a
spectral analvsis of the Tronick data, presenting the
additional descnptive information we can gather
about the interactions and then showing how this
information was used to ldentifv approximatelv the
form of the time-domam models

Spectral Analysis: An Introduction

The concept of "spectral decomposition" of a
time senes is to approximate the time senes as the
sum of independent stochastic sine waves A sto-
chashc sine wave is one that oscillates at a given
frequency, but where the amplitude is a random
V anable A random frequency can also he expressed
as a random amplitude In other words, a stochas-
tic cycle IS more or less penodic or "almost pe-
riodic " The vanance of the whole senes is then
decomposed as the sum of vanances at each fre-
quency Such a decomposition of one senes is de-
scnbed as the spectral density function The van-
abilitv contnbuted by a frequency band (fi, /») is
indicated hv the area under this curve between /i
and /. Peaks in the spectral density indicate cy-
clicitv Thev indicate which frequencies most con-
tribute to the senes Also, by applying these um-
variate spectral time-senes analvses to the mother's
and the baby's time senes separately, we can de-
termine if they are oscillating m the same frequen-
cy ranges, which is important knowledge for as-
sessing svnchronicity

In addition to being valuable descnptive tools,
these univanate spectral analyses can shed light on
the form of an appropriate autoregressive model
For a univanate autoregression, a model with two
parameters can approximate a senes with one well-
defined spectral peak, one of order four can repre-
sent two cyclicities, and so on (see Box & Jentans
1970) Note that this means that only the two lags
needed to fit a model of order two and thus to de-
scnbe a cycle of any penod, even one which is
much longer than two time units Thus, by exam-
ining the spectral densities, we have some indica-
tion how many autoregressive terms we must in-
clude m our models

The spectral decomposition theorem is not oh-
\ lous In fact, the suggestion in the eighteenth cen-
turv by Daniel Bernoulli that a wide class of math-
eiiidtical functions could be expressed as a sum of
sines and cosines was rejected bv most of the math-
ematicians of his time (see a historical account hy
Hasvkms [1975]), and it remained for Jean Baptiste
Joseph Founer s (1822/1978) monograph to devel-
op the concept Rigorous work on Founer's treatise
continued for another 120 years, and the work was.
onK recently extended to stochastic senes (e g, hy
Wiener 1933, 1949)

Biv ariate spectral time-senes analvsis provides
two additional pieces of information First, the co-
herence spectrum, p-{f), gives the square of the
correlation between the random amplitudes for the
two senes at each frequencv Correlation is, how-
ever, a measure of association, and no direction of
causalitv can be inferred from it When the co-
herence IS high we have evidence of interaction,
but its form must come from other considerations,
when it IS low we know there is little mfiuence in
either direction

Second, the phase spectrum, •f>{f), descnhes
the lead-lag relationship at each frequency If two
spnes x{t) and y{t) are considered, with x(t) the
input senes, then a negative phase indicates that
r(f) leads y(t) If x(t) denotes the mother's senes,
this situation could he interpreted to mean that the
mother is leading and the baby is responding to
the mother when considenng cvclicity at a speafic
frequency In fact, we can compute, for each fre-
quencv component, the baby's response time hy di-
viding the phase ^(/) hy (—2T/) We assume nere
that the phase is given m radians and the frequen-
cies in cvcles per unit time (Koopmans 1974, p 95)
If the ratio is zero, the senes are perfectly in phase
and synchronous The phase can be examined at
those places in the frequency range where mother
and baby are cycling together, that is, where their
individual spectral densities peak at the same fre-
quencv If the phase spectrum is a straight line,
this means that througriout the entire frequency
range the same time lead-lag relationship holds A
positive slope indicates that the baby leads, a nega-
tive slope indicates that the mother leads (for a
proof of this latter result see Gottman [1979]) The
size of the slope can indicate how many cross-re-
gressive terms are needed in the time-domain mod-
els For example, if the time delay is 5 sec, we will
need at least five cross-regressive terms

Phase information is especially meamngful at
those frequencies where the mother and baby are
cychng together, that is, where their individual
spectral densities peak together and where the co-
herence IS high Indeed, the phase spectrum is in-
terpretable only when the colierence is high Jen-
kins and Watts (1968) showed that the variance of
the sample estimate of the phase is proportional to
(1 — p2)/p2 Thus if p2 IS close to 10, Uie vanance
of the phase estimate is small, as p2 decreases, the
vanance increases So, low coherence suggests that
any lead-lag relationships are accidental and not
indicative of cross-correlational patterns



In practice it is only possihle to estimate these
spectral parameters for a small set of frequencies
(called the "overtone series") Details for such es-
timation and confidence-interval procedures can he
found in Jenkins and Watts (1968) or Koopmans
( 1974) It should also be noted that these estima-
tion procedures require a rather large amount of
data The Tronick senes consisted of roughly 175
observations each This was by no means excessive
The SPSS programs of Appendix A indicate how
to obtain these estimates, afthough confidence pro-
cedures are not available yet

To summanze, we propose the following use
of spectral time-senes analvsis The spectral density
estimates should he etamined to find which cvchci-
ties dommate the senes Regions of high coherence
indicate cross-correlation at these frequencies but
d(i not control directly for autocorrelation In such
regions the phase spectrum can indicate asymmetnc
tune delavs Although these methods do not con-
trol specifically for autocorrelation, they assist in
building time-domain models which do by suggest-
ing the numher of auto- and cross-regressive terms
needed

Spectral Analysis of the Tronick Data

In this section we will demonstrate the appli-
cition of spectral time-scries analysis, beginning
Hith the examination of the sample estimates of
the spectra! density functions for mother and habv
and followed hv the examination of the estimates
of the coherence spectrum and the phase spectrum
FollovMng this general descnption we shall indicate
h )v\ we used this data to start the time-domain
step-down procedure at A = B = C = D = 10 Re-
call that vve are examining the differences hetvveen
observations, so we are considenng cychcity and
the svnchronicity of the patterns of change in the
data, not in the data themselves
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We did not perform our analyses using SPSS,
so there are a few differences hetween our plots
and those for SPSS First, SPSS lahels the spectral
intensities by the penod 1 'f mstead of the freqnen-
cv / we show Second, the phase </> is given in de-
grees in SPSS instead of radians, so whereas the
vertical scale in figure 5 is from —T to •^, SPSS
gives a range —80 to 180

For dyad 1, note that the spectral densities
show the same broad outlines hut that the hahv
tends to he cycling slightly faster For example, the
mother s spectrum peaks m the f = 14- 18 and
36-44 cps (cvcles per second) ranges, while the

child s spectrum peiJcs at the shghtlv higher 20-
22 and 42-46 ranges (see fig 6) The coherence
IS low over both uf these ranges, indicating that
these similar cvclicities are more a result of auto-
correlation than cross-correlation (see fig 5) Onlv
at \ erv low frequencies, which contribute relativ elj
little to the vanances of the two senes, is the co-
herence high Nonetheless, examining the phase
spectrum suggests that there may be a general hn-
ear trend throughout the phase spectrum Tins is
illustrated in figure 5 by the parallel lines The
slope of these lines is 30 77, which, when divided
by 2 T , gives a time lag of 4 90 sec Thus, we can
conclude that, although most of the vanation m
these ieries involves autocorrelation, there is some
indication that at slow cyclicitv the two senes are
mterrelated, with the mother responding to the
babv at about a 5-sec lag In view of the facts that
the coherence is generally low and that the phase
spectrum does not control for autocorrelation, this
apparent time delay should be considered a hy-
pothesis to be tested rather than a proven interpre-
tation of the data

Figures 7 and 8 illustrate the facts that the
spectral densities for the mother and baby for the
second dyad both peak in the neighborhood of 10
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< / < 15, and this is the frequency range of high-
est coherence Other peaks appear, but the align-
ment between the two spectra is less obvious or
not present, only at / = 30, where the coherence
!s low, do the spectra peak together again If we
examine the phase spectrum m the frequency range
of highest coherence, we can conclude that the
babv leads the mother, by computing the time de-
lav at the center of this frequency range, we find
that the mother is responding to the baby with a
time delay of less than 1 sec Thus, for dyad 2
we could hypothesize that there is evidence of
strong cross-correlation, but that once again it is
the mother who responds to the baby, that is, the
direction of influence is asymmetnc Once again.
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we must correct for autcxx)rrelation to test this hy-
pothesis '

The third dyad is much more difficult to ana-
lyze spectrally The spectral densities do not ap-
pear to peak together (see fig 9) The coherence
IS high near / = 04, where the baby is cycling
strongly but the mother is not, and near / = 20,
where the opf)osite is true (see fig 10) At / = 04
the hme delay is - 2 20 sec, and at f = 20, the time
delay is - 0 60 sec, which suggests that the baby fol-
lows the mother This is interesting, but we must
be cautious in directly interpreting the phase spec-
trum The frequency / = 20 cps corresponds to a
cycle with a period of 5 sec Thus a time difference
of — 6 sec could also be interpreted as a delay of

tf)
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Fic 9-Spectral density estimates, dyad 3 (frequency is in cycles per second)
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— 6-1-5 = 44 sec or — 6 — 5 = —5 6 sec It is
not clear which is appropriate

With this descriptive insight we now mdicate
how we can use spectral analyses for time-domain
model building

Examination of the spectral densities suggests
the number of autoregressive terms that will be
necessary For dyad 1, the mother's spectrum shows
two peaks and the baby's spectrum shows four,
suggesbng, for this dyad, A = 4 and C = 8 Simi-
larly, for dyad 2, A =1 8 and C = 4, 6, or 8 appear
reasonable Thus, we will start the step-down pro-
cedure at slightl\ larger values, A :^ C — 10

Preliminary estimates of B and D are denved
from the phase analysis Recall that in dyad 1 we
found the mother responding to the baby with a
5-sec delay This suggests that B wdl be at least
5, but it says nothing about D Indeed, we have
no spectral indication about the baby s response to
the mothers past behavior Similarly, for dyad 2,
we find that B will be at least 1 with no evidence
as to what D may be Dyad 3 gave ambiguous re-
sults for the time delav, since it was not clear
whether the partners were synchronous or whether

there was a delay, either way, of about 5 sec Thus
we should take B and D to be at least 5 For safety,
we started the step-down procedure again at the
larger values of B = D = 10

Appendix C
Mathematical Details

In this appendix we relate the procedure de-
scnbed generally in the text to the matrix formula
for multiple regression and then develop the likeL-
hood ratio tests we propose

Matrix Formulation of the Models

The basic model.

Af, = X; o.M,_, -I- X; b,B,_, + e, ,
1-1 J - 1

where t = I, 2, , T, and (allowing for "start-
up observations Afn, M-j, M-u, ), can be re-
written in matnx form as i = X6 + E, where 1 is
the observation vector, 9 the parameter vector, and
X the design matnx

F =

M,

Mo

Mr~i. Mr-t

.MT-1 MT-2

MT-1-A

MT-A

BT-2

Bl-B

Bi-B

BT-\-B

BT-B .
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»hich hjis the familiar least-squares parameter esti-
mates, 9— (X 'X) - l X'Y In large samples, these
estimates have approximately a normal distnbution
with mean * and vanance-covanance matrix a,^

)- ' where 0,2 is the variance of the e.'s

This variance is estimated by the usual mean
square error, as shown at bottom of page below
Fi)r the discussion of the hkelihood ratio tests, it
will be convenient to introduce the symbol *,2 for
the estimate of vanance with 1/T weighting 5̂ 2 =
SSE'T

All of this IS nearly the same as the usual
multiple-regression settmg, and, at least in large
samples, the same methodology applies

The estimates of the c's and d's for descnbing
the baby's behavior are handled identically and
separately, using

^J= (X'X)-'X'Y ,

where in X and Y the roles of M and B are inter-
changed and C and D replace, respectively, A and
B

Likelihood Ratio Tests

The likelthood function for a statistical model
IS the joint probability density of all the random
observations, considered as function of unknown
parameters If we let ln{M,a) denote the likeli-
hood function for the smaller model (3) and Ls( M,
B, a, b) he the likelihood function for the more
general model (1) , then assuming normally dis-
tributed errors, we can wnte

, B, d, b)

J •2 (residuals)'-j
2.0, J

Noting that —(residuals)^ = TS^, this reduces to

L,{M, B,a,t) = (constant) - ^ (C2)

or, denoting the natural logarithm of this multi-
plicative constant by F, ln Lt{M, B, d, b) — F —
T ln Or Similarly, with F denoting the same con-
stant.

Li{M, d) = F - r ln (C3)

where o,' is computed using the SSE from the
model in equation (3)

Let R be the Iikehhood ratio L,/Li If the
smaller model is true, then Q = —2 ln R which
can be convemently expressed as the difference
(2T In o / ) - (2T ln *.) IS asymptotically dis-
tributed as Xor^, with DF equal to the difference in
the number of parameters m the two models This
allows a comparison of the two models and, if the
smaller model is inadequate, gives a measure of its
inadequacy In parbcular, this gives a test whether
b, z= b = — b, = 0 and whether d\ = d-. —

= dD~O
Note also that we assumed normally distributed

errors in the construction of this test Although this
provides a justification of the test, the asymptotic
X^ distribution holds without normalitj', thus this
procedure will still give valid results

Reference Notes
1 Stephenson, G Personal communication, No-

vember 1979
2 Stern, D Personal communication, June 1979
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