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Detecting Cyclicity in Social Interaction

John M. Gottman
University of Illinois at Urbana-Champaign

This article reviews spectral and cross-spectral analytic methods for detecting
cyclicity, cross-cyclicity, and lead—lag relationships in continuous data derived
from the observation of dyadic interaction. It is found that lead-lag relationships
can be assessed using the phase spectrum. Spectral analytic methods are then
generalized to categorical observational data, and it is shown that by these
methods one can derive the classical information theory definition of social com-

munication and its distribution statistics.

Researchers who study social behavior are
discovering that there are occasions when
cyclical patterns characterize dyadic inter-
action, and thus they are searching for sta-
tistical techniques that can detect these cycles.
The spectral analysis of time-series records was
briefly suggested by Luce (1970) as a useful
technique for the study of biological rhythms
such as heart rate, respiration, REM sleep,
and other cyclic biochemical and physiological
processes. However, spectral analysis is not
widely known to behavioral scientists, and
it has yet to be used in the study of social
interaction. A recent exception is the work of
Hayes and Cobb (Note 1), who observed
couples living in a laboratory setting, analyzed
cycles of talk and silence using spectral analysis
of time-series records, and related an observed
cycle to human circadian rhythms.

Researchers who study dyadic social inter-
action are also interested in the bivariate case
in which two time-series records are obtained,
one from each of the two interacting orga-
nisms; the research question often involves
the search for cycles in cross-correlations be-
tween the two series. For example, Kendon
(1967) reported that when two people con-
verse, the cycles of gaze and gaze aversion
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interlace, much as do sine and cosine waves.
People are out of phase in eye-to-eye contact
as a function of who is speaking; in particular,
when a person begins speaking he or she looks
away from the listener and begins increasing
eye-to-eye contact time toward the end of the
speech, which acts as an implicit signal for
the listener to begin looking away and speaking.

Another example of cross-cyclicity is the
work of Brazelton and his associates (e.g.,
Brazelton, Koslowski, & Main, 1974). Tronick,
Als, and Brazelton (1977) studied mother—
infant interaction and reported that the
infants looked away following periods of
maximum involvement with the mother and
after a rest period became engaged again.
Tronick et al. calculated synchrony and dis-
synchrony as running correlations between
scaled scores of involvement, from maximum
positive involvement to maximum negative
involvement, but did not employ cross-
spectral time-series methods. Cross-spectral
analysis would have been an appropriate
technique for studying both synchrony and
lead-lag relationships between two time series
in the Tronick et al. study.

Cross-spectral analysis may have consider-
able promise for studying interacting physio-
logical systems within an organism. For
example, Porges and his associates (Porges,
Bohrer, Keren, Cheung, & Franks, Note 2)
are using cross-spectral methods to study the
linkage between respiration and heart rate.
A function called cokerence obtained from
cross-spectral analysis is the equivalent of the

Copyright 1979 by the American Psychological Association, Inc. 0033-2909/79/8602-0338%00.75

338



CYCLICITY

square of the correlation between the two
physiological systems as a function of their
relative lag. Porges et al. found that the
coherence between respiration and heart rate
is related to cognitive attentional processes.
Hyperactive children had low coherence be-
tween respiration and heart rate; low doses of
methylphenidate had positive influence on
cognitive performance and social behavior,
whereas higher doses often resulted in lethargy.
Porges and his associates are testing the model
that deficits in linkage between the respiratory
system and the cardiovascular systems are
related to the attentional problems of hyper-
active children and that low doses of methyl-
phenidate mediate to increase the coherence
between systems, thereby affecting cognitive
functioning.

Because time-series techniques are not
widely known to psychologists, this article
reviews the spectral and cross-spectral analysis
of continuous data. The present research also
derives the new result that the slope of the
phase spectrum of any two stationary processes
can be used to detect lead-lag relationships.
Lead-lag relationships are useful in making
inferences about which series is, in some sense,
driving the other. One application of lead-lag
relationships is a redefinition of the concept
of dominance in social interaction as an
asymmetry in predictability in the time domain
(Gottman, in press). This definition of domi-
nance using cross-spectral analysis subsumes a
range of observations about dominance across
species. For example, the beta male in a group
of monkeys is more responsive to the behavior
of the alpha male than conversely (Maslow,
1936) ; that is, the behavior of the beta male
is more predictable from past behavior of the
alpha male than conversely.

Most researchers of social interaction collect
categorical rather than continuous observa-
tional data (e.g., Hutt & Hutt, 1970; Lewis &
Rosenblum, 1974). There are currently no
statistical techniques for detecting cycles in
one sequence and cycles between two sequences
for categorical data over time. Categorical
data collected over time can always be trans-
formed to continuous time-series data; for
example, for every block of % time units the
local probability of each category can be
computed, which produces a continuous
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variable for each category. For a discussion of
categorical data types in observational re-
search, see Gottman and Bakeman (in press).

In this article, I derive extensions of spectral
time-series methods to categorical data. One
result of these extensions is the derivation of
the commonly used information theory defini-
tion of communication, summarized by Wilson
(1975) as follows:

Communication has been defined as the process by
which behavior of one individual alters the probability
of behavioral acts in other individuals . . . . In words,
the conditional probability that act X, will be per-
formed by individual B given that A performed X, is
not equal to the probability that B will perform X; in
the absence of X;. (p. 194)

This is an important definition for the
study of sequences in social interaction because
it suggests the notion that a behavior in one
organism has social communicative value to
the extent that it reduces uncertainty in
predicting the behavior of another organism.
This definition is now widely used to detect
sequences in dyadic interaction (for reviews,
see Gottman & Bakeman, in press; Gottman
& Notarius, 1978; Sackett, 1977),

Another result of the extension of spectral
time-series methods to categorical data in this
article is the demonstration of the validity
(and limitations) of a statistical test of signifi-
cance between conditional and unconditional
probabilities recently suggested by Sackett
(1977). After the information theory definition
of communication is derived, spectral and
cross-spectral methods are used to suggest
how lead-lag relationships and cycles can be
detected in categorical time series.

The Continuous Case

Granger and Hatanaka (1964) noted that
the first time series subjected to spectral
analysis were those that had a cycle with one
dominant frequency, such as the 1l1-year
oscillation in sunspot data and the annual
cycle in meteorological data. They wrote,

It was felt that if one could determine the amplitude
period and phase of a sine curve sufficiently accurately
and subtract this from the data, then the remainder
ought to be an independent, random series. When, in
fact, this was done and the remainder was still found
to be somewhat too smooth, it was natural to re-use
the current predominant idea of the cause of the
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smoothness and to look for yet further sine curves to
fit to the data. (pp. 4-5)

The model for a time series, X,, was therefore
a weighted sum of sine and cosine curves with
an uncorrelated random remainder; if the
number of observations, # = 2¢ + 1, is odd,
one can write

q
X, = Ao+ 2 (A;cos 2nfit

=1
+ Bisin 2nfit) + &, (1)

where f; = ¢/n is the 4th harmonic of the
fundamental frequency 1/z. Fourier analysis
makes it possible to derive least squares
estimates for the coefficients:

PN

- 1
A0=X=;L2Xt§

- 22
A, == X, cos 2nfid;

t=1

n
Bi = g Z X, sin 21rf¢l.
t==1

This decomposition of a time series into
component frequencies met with some initial
success. For example, Whittaker and Robinson
(1924) showed that the brightness of a variable
star could be decomposed into two component
frequencies, and they thus determined that
the variable star was a binary star.

It would be useful to have some function
that peaked at frequency bands that made
major contributions to the variance of the
series. For an infinite number of observations,
the variance of the series at each frequency, fi,
is called the spectral density function, f. For
a sample of » points it is called the periodgram:
I(f;) = (1/8%)(A2+ B?). Because the sine
and cosine terms in Equation 1 form an ortho-
gonal set of functions, it can be shown that
the variance of the time series is partitioned
into independent parts by the periodogram:

1 5, 1
SF (X~ Ry = T 1.

Early work on the spectral analysis of time
series suggested that the periodogram was
precisely the function that would peak at
frequencies that contributed major portions
to the variance of the time series; in fact,
Schuster (1898) suggested that the periodo-
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gram be calculated and that its peaks be used
to detect cycles. Subsequently, problems with
spurious peaks led to the construction of
significance tests for the periodogram (for a
review of these tests, see Jenkins & Priestley,
1957). However, these tests were not adequate
because the periodogram has some very poor
statistical properties.

If the sample autocovariance at lag % is
defined as

n—k

Z XtXt—ky

t=1

1
Co==
n

then C; is an unbiased estimator of the popu-
lation autocovariance (Hannan, 1967), and
it can be shown (Box & Jenkins, 1970, p. 45)
that the periodogram is given by

1 n—1
I(f) = g(Co + 2 kz_:l Cy, cos 2nfk),

where 0 < f <3, which expresses that the
periodogram is the Fourier transform of the
sample autocovariance function. This implies
that the periodogram is also easily calculated
from the sample autocovariances; thus at
first the problems of spectral time-series
analysis appeared to be solved.

Unfortunately, although the periodogram
does converge to the spectral density function,
J, it does not converge uniformly; that is, its
variance around f does not decrease to zero
as #, the number of observations, increases
(Hannan, 1967, pp. 52-533). In fact, Bartlett
(1948) showed that the limit of the variance
of the periodogram as # increases is of?, where
o? is the variance of the series. The failure
of the periodogram led Tukey (1967) to make
the following reflection:

If we dealt with problems involving the superposition
of a few simple periodic phenomena, as do astronomers
interested in binary stars and related problems, we can
learn much from the periodogram. Sadly, however,
almost no one else has this kind of data. As a result
the periodogram has been one of the most misleading
devices I know. (p. 25)

A dramatic illustration of Tukey’s point is the
periodogram of a series of random numbers,
called white noise. White noise, like white
light, is composed of all frequencies with equal
intensities, and therefore its periodogram
should be a straight line. Jenkins and Watts
(1968) showed that the periodogram of white
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noise is not only not a straight line but con-
tinues to oscillate wildly as the number of
observations is increased. However, the spuri-
ous peaks of the periodograms of each sample
of white noise occur in random places on the
frequency domain, and this provides the key
to solving the problems of the periodogram.
The average of many periodograms obtained
from many samples of the same white noise
process in fact tends toward a straight line as
the number of observations in each sample
increases.

This observation led Bartlett (1948) to
suggest that the time series can be segmented
and that a periodogram can be averaged across
all segments. Bartlett showed that the averaged
periodogram would coverage uniformly to the
spectral density. Jenkins (1967) demonstrated
that Bartlett’s suggestion is equivalent to
estimates of the form

1 = 55ICu+ 2 E NIy cos 2ufs]. )

The function of A(f:) is called a spectral
window, and it weights the autocovariance
function to ensure uniform convergence.
Parzen’s (1967) result is important because
to implement Bartlett’s suggestion would
require an extremely long time series, whereas
Jenkins’s suggestion can be implemented with
shorter time series, assuming that the window
weighting function is suitably chosen. The
most commonly used spectral window is the
Tukey-Hanning window (Blackman & Tukey,
1958): A; = 1 + cos (mj/m), where m is an
arbitrary integer, usually chosen so that
m < n/3. (See Parzen, 1967, for a discussion
of various spectral windows.) Thus a weighted
Fourier transform of the autocovariance
function does converge uniformly to the
spectral density. Jenkins and Watts (1968)
showed that the distribution of the intensity
estimates at each frequency of the periodogram
“will be very nearly a X;? regardless of the
distribution of the [time-series] process” (p.
233). For the Tukey-Hanning window, the
equivalent degrees of freedom must be modified
(Granger & Hatanaka, 1964, pp. 59-64;
Jenkins & Watts, 1968, pp. 248-257). In this
article the term spectrum refers to the weighted
periodogram.

An illustration of the spectrum may clarify
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its relationship as the Fourier transform (with
an appropriate spectral window) of the auto-
covariance function. If the time deties is a
second-order autoregressive process,

Xi=01 X+ ¢ X o+ ¢ 3)

where ¢, is an uncorrelated, random series and
12 + 4¢2 < 0, then the behavior of the series
will appear periodic. The constraints on ¢
and ¢, occur because periodicity only occurs
when the roots of the characteristic equation
of the process are imaginary (Box & Jenkins,
1970, p. 59). Note that this time series will not
be deterministically periodic, as is a sine wave;
there is a random component to the periodicity.
In this case the autocovariance function will
be a single-frequency damped sine wave.!
Figure 1is a plot of the autocorrelation function
and spectrum of a simulated second-order
autoregressive model. The spectrum shows
only one peak?; a fourth-order autoregressive
process is capable of representing a process
with two peaks, and so on.

The relationship between the autocorrelation
and spectrum of the process represented by
Equation 3 is intuitively clear. If the time
series is periodic, the autocorrelation should
increase at multiples of the period. For

! The expression for the theoretical autocorrelation
function is

[sgn (¢1)Jkd* sin 2nfok + F)
Pk = 3
sin F

b

where sgn = 41 if ¢, is positive and sgn = —1 if
¢1 is negative. The factor d is called the damping factor,
fo is called the frequency, and F is called the phase.
These factors are related to the model parameters

as follows:
d = [(—¢d)tsgn (¢1)];
S LY
cos 21I'fo = 2(_4,2)’)
14 ¢
tan F = 1 td’ tan 2xfo.

2 The spectrum of a second-order autoregressive
process can be written in closed form as

() = 20.2/[1 + ¢:i2 + ¢ — 261(1 — ¢3) cos 2nf
—2¢s cos 4nf],

where 0 < f < 4. The spectrum reflects the periodic
behavior of the second-order autoregressive process
when the roots of its characteristic equation are
complex.
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Figure 1. Autocorrelation function (rx is the autocorre-
lation at lag %) and spectrum, f(f;), of one realiza-
tion of a second-order pseudoperiodic time series.
(Xt = 1.1X¢_1 hnd .5X¢_2 + 8;.)

example, for monthly wholesale wheat prices,
the correlation between months 12 months
apart (June with June, July with July, etc.)
should be higher than that between months in
different seasons. This relationship should fall
off across years, and so the autocorrelation
should resemble the damped sine wave in
Figure 1. Since there is only one 12-month
cycle, one would expect the spectrum (the
weighted Fourier transform of the auto-
covariance function) to show only one peak.
If the series had two cycles, the autocorrelation
function would appear similar in shape (but
more complex), and the spectrum would have
two peaks.

Note that one cannot reconstruct the original
time series simply by knowledge of the spec-
trum. This is true because very different series
can be produced simply by adjusting the
relative phases of the component frequencies;
the phase of a sine wave determines its ampli-
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tude at time zero. Phase is a particularly
important concept in the bivariate case.

For two time series, the generalization is not
difficult. In fact, the Fourler transform (with
suitable window) of the cross-covariance
between the two time series is the cross-
spectrum. The cross-spectrum has several
components, a phase spectrum, and a cross-
amplitude spectrum. The phase spectrum
indicates

whether the frequency components of one series lead
or lag the same frequency components in the other
series, and the cross-amplitude spectrum shows whether
the amplitude of the component at a particular fre-
quency in one series is associated with a large or small
amplitude at the same frequency in the other series.
(Jenkins & Watts, 1968, pp. 342-343)

The coherence is a function similar to the
square of a correlation coefficient and is defined
as the ratio of the square of the cross-spectrum
divided by the product of the spectra of the
individual series?®; for two series, X, and V,,

| f zy (f l') l2
P = otuy @
Distribution properties of these functions are
discussed in Jenkins and Watts (1968, chap.
9); the properties for these functions with
the Tukey—Hanning window are discussed in
Granger and Hatanaka (1964, chap. 5). A
coherence of one means that prediction is
perfect from one series to another for all
frequencies; a coherence of zero means that
it is impossible to predict one series from the
other. The prediction is of amplitude covaria-
tions in the two series, with no indication of
lead—lag relationships, so that a complete
description of relationships requires the phase
spectrum as well as the coherence. If the
coherence has one major peak, then the bulk
of the correlation between the two processes
is confined to a particular frequency band.
If it is essential to predict correlations at
major frequency bands of series ¥, the co-
herence can be investigated at frequencies
that have peaks in the spectrum of V. An

% An alternative approach for specifying the relation-
ship between two time series in the time domain, as
opposed to in the frequency domain, is called iransfer
Sunction analysis and is discussed by Box and Jenkins
(1970).
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alternative, suggested by Porges et al. (Note
2), is to compute one statistic called the
weighied coherence, which is an estimate of the
amount of variation in one series that can be
accounted for by variation in the other:

Z_ kxy(fi)fzx(fi)/z frz(fi)-

They wrote,

Conceptually the coherence may be thought of as a
time-series analogue of the omega-squared . .. . or
the amount of variance accounted for by the influence
of one series on the other. Therefore, the coherence
times the spectral density estimate of heart rate
activity at each frequency . . . . would describe the
amount of heart rate activity which could be accounted
for by respiration, i.e., the shared variance of heart
rate and respiration. (p. 5)

If the cross-covariance is C,,(f), the un-
weighted cross-spectrum is the Fourier trans-
form of the cross-covariance:

1] =
fzy(f) = '2_1r'2 eﬂrﬂczu(t)a where ¢ = (— 1);-

This complex number can be written as a real
part plus an imaginary part: f,,(f) = C + Q.
The phase spectrum is defined as

$a(f) = arctan )

C s called the cospectrum and Q the quadrature
spectrum, and they measure the covariance
between in-phase and out-of-phase com-
ponents, respectively.

The slope of the phase spectrum determines
the time-lag and the lead-lag relationships
between the two series. For example, if one
time series, X (f) = ¢(), is white noise with
variance o? and the other series is ¥ ()
= X(@¢+ L), then L is the lead time and ¥V
leads X by L time units later. Since X(¢) is
white noise, the covariance of X (¢{) and ¥V (¢) is

Coyt) = E[X()Y (s + 8]
= E[X(®X(s+ ¢+ L)]
g at t=—L
= 10 otherwise

The cross-spectrum is the Fourier transform
of the cross-covariance. Assuming ¢ = 1, this
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by (1)

slope = 2L

\

Figure 2. Phase spectrum, &, (f), when Y (¢) leads X ()
by a constant time, L.

f, frequency

gives
12
Ja(f) = I _—Zw e®r11C,, (f)

at

2
4 ..

= -27re"2’f L= o (cos 2mfL — i sin 2xfL),

where ¢ = (—1)}. The phase spectrum is

given by
~ Q) ~ —sin 2n/L
¢z, (f) = arctan (C = arctan | ~———5—5~ Il L
= arctan (—tan 2xfL) = —2xfL.

Therefore the phase spectrum will be a straight
line that passes through the origin with
negative slope proportional to the time lag, L
(see Figure 2). .

More generally, lead-lag relationships can
be estimated by testing the significance of the
slope of the least squares linear regression
approximation to the phase spectrum. It is
important to note that this method does not
give complete information; X and ¥ may be
periodic at a particular frequency and have a
constant phase relationship at that frequency

4 The phase spectrum shown in Figure 2 can be
shown to hold for any two stationary processes that
differ by a constant time lag. If Y (¢) = X (¢ + L), then
the Fourier transform of YV (¢) is

FIY®)] = /_ * Y()ewidt = /

*

X (¢ + L)dt.
If one lets ¥ = ¢ + L, then
FLY ()] = / T gL X (1)du = eVl f " X (u)du;

FLY(®)] = e »LF[X ()]

Hence the Fourier transform of ¥ (¢) is the Fourier
transform of X (f) multiplied by the phase shift ¢4,
where ¢ = —wlL.
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but some other phase relationship at another
frequency. The slope of the phase spectrum
averages the lead-lag relationship across all
frequencies, and it may be important in a
particular investigation to determine the phase
relationship between X and V at specific
frequencies of interest. One alternative dis-
cussed by Granger and Hatanaka (1964) is a
two-component model in which the frequency
domain is divided in half and lead-lag relation-
ships are assessed separately for slow and
rapid components. For these calculations, com-
puter programs are available in most universi-
ties that have the University of California,
Los Angeles biomedical series (Dixon, 1974,
pp. 517-382, Programs 2T, 3T, and 4T).

The Categorical Case

In the categorical case two series, X, and ¥,
are set equal to one if the characteristics that
they represent are observed and equal to zero
otherwise. The unbiased estimator of the
cross-covariance, lagged £ units in time is

1 noh _ -
Cay(k) = n—k T (X=X)(Vix — ).
1
For categorical data, X and ¥ are the un-
conditional probabilities, $, and p,, that X,
and ¥, are one in # — k observations, so that

1 n—k
C:cy(k) = m ; (Xt - Pz)(yt+k - Pu)

n—k n—k
= (X XV — 9 X X,
n— kg T
n—k

- po Zl Vigr + popy(n — k)]

n—k
7" — k[}Z X Vi — Pypz(” - k)
”" P-’tpy(” — k) + Pzpy(" - k)];

n—k

[X XV
—pyp(n — k)] (6)

The sum in Equation 6 is simply the number
of lagged-% (1, 1) pairs. Note that by definition,
the conditional probability that ¥ is equal to
one given that X was equal to one % time
units ago, $x(¥]X), is simply the number of

Czy(k) = n—k
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(1, 1) pairs at lag k divided by the number of
occurrences of X = 1 in » — & observations.
If one denotes the number of (1, 1) pairs at
lag k as M., (k), then, from the definition of
the lagged conditional probability, it follows
that px (¥ | X) = M., (k)/p.(n — k). Therefore,
the number of (1, 1) pairs at lag k& is

n—k

M., (k) = ; XY = (V[ X) (p2) (0 — k).

Substituting this back into Equation 6 gives
Cay(k) = P;I:Pk(Y|X) - Py]; )

as the categorical equivalent of the cross-
covariance.

This function is proportional to the informa-
tion theory definition of communication
assessed as the difference between conditional
and unconditional probabilities.

To derive the distribution of the covariance,
the variance of the covariance can be com-
puted as follows:

Coy(k) = pL2:(VX) — p,];
Coy(k) — C = pupe(Y|X) = ppu(V|X)
= p[ (V] X) — p(Y|X)];
var [C:w(k):] = pt{var [Pk(y|X)]}

Under the null hypothesis of no relationship
between the two categorical time series, X,
and ¥, pu(¥|X) = p,, and the variance of
the unconditional probability of a dichotom-
ous variable that is not autocorrelated is
p,(1 — p,)/m (Siegel, 1956, p. 40), where
m = the number of observations used to
calculate p,. For the covariance C.,(k),
m = n — k, and the result is

var [Coy ()] = pp,(1 — )/ (n — k).

Since under the null hypothesis, C.,(k)/
SD[C,, (k)] is normally distributed with mean
zero and unit variance (N[0,1]) (Box &
Jenkins, 1970), one has

Czy(k) — pz[?k(ylx) - Pu]
SD[Coy(B)] — [P0 — p0)/ (0 — R)
~N(0,1);
pe(ylx) — py

2= 00— p/n— BT

~N(©,1). (8)
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This is a derivation of a statistic that was
recently proposed by Sackett (1977).

An estimate of the error introduced in
Equation 8 by autocorrelation in each series,
under the null hypothesis of no cross-corre-
lation, can be obtained by using the expression
for the variance of the cross-correlation under
the null hypothesis given by Box and Jenkins
(1970, p. 377):

var [12, (912 {1+ 5 70 ()]

1

Thus, the variance of the cross-correlation
would be 1/(n — k) if there were no auto-
correlation. To estimate the quantity 8, rewrite
the autocorrelations using

Yz (k) = Cps (k)/czz (O) :

§ = i ra:x(j)ruy(j)

1 oo
= =2 Cr.(5)Cpy ().
sz (O)ny (0) Zl: (]) vy (])
Now substitute the quantity for the covariance

from Equation 7:

_ pety
Pz(l - Pz)Py(l -

5 > z [pi(xl2) — p.]

X [piyly) — p,]

If one assumes that the quantity in the sum
decreases exponentially with increasing lag
and one denotes
6 = [pr(x|x) = pI0r(y[) — $.],
then
5 = 1 0
T A=A —p) Q-0
Delta is a maximum when the conditionals are
one and a minimum when the conditionals
equal the unconditionals:
1 .
1- (1 - Pz)(l - pu),
The cross-spectral density function for
categorical data can be written as the Fourier

transform of the cross-covariance (weighted
by a suitable window), and this function will

= 5min = 0.

6mBX
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behave in a fashion similar to the continuous
case. The generalizations are obtained by
applying Equation 2 to Equation 7: The
cross-spectrum is

Falf) = 5-CaOMa()

n—1

+2 Z=:1 A {(f)Cay (§) cos 2afif].

The spectrum of X, is

Jexl) = 3-L0:0 = pIMo(1)

n—1
+2 T N(f)Cus(j) cos 2/ ]
=
The spectrum of ¥, is

Funl) = 3-L0,(0 = polf)

+2 é M (TC () cos 207

The lambdas are the Tukey-Hanning weights
(Blackman & Tukey, 1958).

To summarize, Equation 7 is the categorical
equivalent of the cross-correlation, and if
X =V, of the autocorrelation. If cyclicity
exists in a series of categorical data with one
major cycle, then C,, (k) should behave as a
damped sine wave of Figure 1, and the spec-
trum should show one peak. An examination
of the spectrum, which is the weighted Fourier
transform of Equation 7, reveals major cycles
in the categorical series. The coherence and
phase spectrum are similarly generalized, and
the slope of the phase spectrum detects lead—
lag relationships that span all component
frequencies. Computationally, all these sta-
tistics can be calculated simply by inputting
each series as a binary zero—one time series.

To illustrate the relationship between con-
tinuous and dichotomous spectral time-series
statistics, one example that compares statistics
for continuous data and the same data di-
chotomized around the mean is presented.

Example

The data in this example are derived from
coding a videotape of a married couple working
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Figure 3. Positivity of behaviors of one couple on an improvised conflict task.

on an improvised conflict task. The coding
system and the method for generating the
time series from categorical data are described
in Gottman, Markman, and Notarius (1977).
The graphs displayed in Figure 3 represent
a tally of positive minus negative nonverbal
behavior coded from voice tone, facial expres-
sions, and body cues. The unit plotted on the
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PHASE SPECTRA
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abscissa is the “floor switch,’”” that is, the set
of utterances before one person gives up the
floor to the other.

These data were transformed to categorical
data by dichotomizing around the mean of
each series, and phase spectra and the co-
herences were calculated for both the discrete
and the continuous cases using Tukey-Hanning
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Figure 4. Phase spectra for continuous and dichotomous case of couple in Figure 3; ®,,(f) = phase

spectrum; f = frequency.
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Figure 5. Coherence spectra for continuous and dichotomous cases of couple in Figure 3; f = frequency.

weights and the Fast-Fourier transform pro-
gram available at the University of Illinois
(souPaAc programs). Figures 4 (see Equation 5)
and 5 (see Equation 4) present a comparison
of these two statistics for the continuous and
categorical cases. The phase spectra are nearly
identical and have very similar regression
lines that in both cases are interpreted as the
wife leading the hushand, with a constant
lag equal to the slope of the regression line.
The slope is .31 for the continuous case and .25
for the categorical case.

The coherence for the categorical case is
much lower, which is not surprising because
so much information about strength of associa-
tion is lost by dichotomizing. However, the
important aspect of the coherence is the
location of peaks, and one can see that the
coherence for the categorical case has a shape
similar to that of the continuous case. The
two highest peaks (at f = .1 and f = 4) are
the same for both cases, so that information
about cyclicity in the strength of association
across series is preserved.

Conclusion

Spectral and cross-spectral time-series
methods were reviewed in this article for
continuous data, and interpretations were
discussed for the spectrum, the coherence, the
weighted coherence, and the phase spectrum.
These methods were also extended to cate-

gorical data. The extension made it possible
to derive the information theory statistic
for comparing conditional with lagged un-
conditional probabilities and for exploring the
limits of the z-score test as a function of
autocorrelation. Subsequent investigations
should generate stochastic time-series data
by using known autoregressive-moving average
models with seasonal components (Box &
Jenkins, 1970) and by comparing continuous
and dichotomous analyses. The methods
proposed in this article need to be applied to a
range of problems, and their ability to describe
patterns in data across time and to fail to
detect patterns in known random data needs
to be assessed empirically.

Reference Notes

1. Hayes, D. P., & Cobb, L. The temporal organization
of long-term social interaction. Paper presented at the
meeting of the American Psychological Association,
Washington, D.C., September 1976.

2. Porges, S. W., Bohrer, R, E., Keren, G., Cheung,
M. N., & Franks, G. J. Respiratory sinus arrythmia:
A time-series model assessing the influence of methyl-
phenidate on vagal tonus. Unpublished manuscript,
University of Illinois, 1977.

References

Bartlett, M. S. Smoothing periodograms from time-
series with continuous spectra. Nature, 1948, 161,
686-687.

Blackman, R, B., & Tukey, J. W. The measurement of
power spectra. New York: Dover, 1958.



348

Box, G. E. P., & Jenkins, G. M. Time-series analysis:
Forecasting and control. San Francisco: Holden-Day,
1970.

Brazelton, T. B., Koslowski, B., & Main, M. The origins
of reciprocity: The early mother-infant interaction.
In M. Lewis & L. A. Rosenblum (¥ds.), The effect of
the infant on its caregiver. New York: Wiley, 1974.

Dixon, W. J. (Ed.). Biomedical computer programs.
Berkeley : University of California Press, 1974.

Gottman, J. Experimental investigations of marital
interaction. New York : Academic Press, in press.

Gottman, J., & Bakeman, R. The sequential analysis
of observational data. In M. Lamb, S. Soumi, & G.
Septhenson (Eds.), Methodological problems in the
study of social interaction. Madison: University of
Wisconsin Press, in press.

Gottman, ]J., Markman, H., & Notarius, C. The
topography of marital conflict: A sequential analysis
of verbal and nonverbal behavior. Journal of Marriage
and the Family, 1977, 39, 461-477.

Gottman, J., & Notarius, C. The sequential analysis of
observational data using Markov chains. In T.
Kratochwill (Ed.), Strategies to evaluate change in
single subject research. New York: Academic Press,
1978.

Granger, C. W. J., & Hatanaka, M. Speciral analysis of
economic time series. Princeton, N.J.: Princeton
University Press, 1964.

Hannan, E. J. Time-series analysis. London : Methuen,
1967.

Hutt, S. J., & Hutt, C. Direct observation and measure-
ment of behavior. Springfield, Ill.: Charles C Thomas,
1970.

Jenkins, G. M. General considerations in the analysis
of spectra, In E. Parzen (Ed.), Time-series analysis
papers. San Francisco: Holden-Day, 1967.

Jenkins, G. M., & Priestley, M. B. The spectral analysis
of time-series. Journal of the Royal Statisiical Society
(Series B), 1957, 19, 1-12.

JOHN M. GOTTMAN

Jenkins, G. M., & Watts, D. G. Spectral analysis and its
applications. San Francisco: Holden-Day, 1968.

Kendon, A. Some functions of gaze direction in social
interaction. Acta Psychologica, 1967, 26, 1-47.

Lewis, M., & Rosenblum, L. A. (Eds.). The effect of the
infant on ils caregiver. New York: Wiley, 1974,

Luce, G. G. Biological rhythins in psychiatry and
medicine. Chevy Chase, Md.: National Institute of
Mental Health, 1970.

Maslow, A. H. The role of dominance in the social and
sexual behavior of infra-human primates: I. Obser-
vation at Vilas Park Zoo. Journal of Genetic Psy-
chology, 1936, 48, 261-277.

Parzen, E. Notes on Fourier analysis and spectral
windows. In E. Parzen (Ed.), Time-series analysis
papers. San Francisco: Holden-Day, 1967.

Sackett, G. P. The lag sequential analysis of con-
tingency and cyclicity in behavioral interaction
research. In J. Osofsky (Ed.), Handbook of infant
development. New York: Wiley, 1977.

Schuster, A. On the investigation of hidden periodicities
with application to a supposed 26 day period of
meteorological phenomena. Terra Magnum, 1898, 3,
13-41.

Siegel, S. Nomparamelric statistics. New York: Mec-
Graw-Hill, 1956.

Tronick, E. D., Als, H., & Brazelton, T. B. Mutuality
in mother-infant interaction. Journal of Communi-
cation, 1977, 27, 74-79.

Tukey, J. W. An introduction to the calculations of
numerical spectrum analysis. In B, Harris (Ed.),
Spectral analysis of time series. New York: Wiley,
1967.

Whittaker, E. T., & Robinson, G. The caleulus of
observations. London: Methuen, 1924,

Wilson, E. D. Sociobiology: The new synthesis. Cam-
bridge, Mass.: Belknap Press, 1975.

Received December 5, 1977 m



