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DESIGN AND ANALYSIS OF RESEARCH USING
TIME SERIES

JOHN M. GOTTMAN, RICHARD M. McFALL,1 AND JEAN T. BARNETT

University of Wisconsin

A time-series methodology is developed for approaching data in a range of research
settings. A design package is presented using the time series as a method to elimin-
ate major sources of rival hypotheses. A mathematical model is offered which
maximizes the utility of time-series data for generating and testing hypotheses.
Special considerations in the application of the model are discussed.

The purpose of the present paper is to present
a methodological approach to such research
areas as psychotherapy, education, psycho-
physiology, operant research, etc., where the
data consist of dependent observations over
time. Existing methodologies are frequently
inappropriate to research in these areas; com-
mon field methodologies are unable to control
irrelevant variables and eliminate rival hy-
potheses, while traditional parametric labora-
tory designs relying on control groups are often
unsuitable.

New data-analysis techniques have made
possible the development of a different meth-
odological approach which can be applied in
either the laboratory or in natural (field) set-
tings. This approach is responsive to ecological
considerations (Willems, 1965) while permit-
ting satisfactory experimental control. Control
is achieved by a network of complementary
control strategies, not solely by control-group
designs.

THE USE OF TIME SERIES IN DESIGN

The most persuasive experimental evidence
comes from a triangulation of research designs
as well as from a triangulation of measurement
processes. The following three designs, when
used in conjunction, represent such a triangu-
lation: (a) the one-group pretest-posttest de-
sign; (b) the time-series design; and (c) the
multiple time-series design. These designs need
not be applied simultaneously; rather, they
form a complementary network of designs, each
meeting different research demands by elimin-
ating different sources of rival hypotheses. A

1 Requests for reprints should be addressed to
Richard McFall, Department of Psychology, Charter
at Johnson, University of Wisconsin, Madison, Wis-
consin 53706.

detailed evaluation of each of these designs has
been presented elsewhere (Campbell, 1967;
Campbell & Stanley, 1963).

The One-Group Pretesl-FosUest Design

This design, although inadequate when used
alone, makes a significant and unique contribu-
tion to the total design package. It provides an
external criterion measure of the outcome of a
programmed intervention. Each subject serves
as his own control, and the difference between
his pre- and posttest scores represents a string-
ent measure of the degree to which "real life"
program goals have been achieved.2 For ex-
ample, the ultimate success of psychotherapy
is best evaluated in terms of extratherapeutic
behavior change. This design, then, documents
the fact of outcome-change without pinpoint-
ing the process producing the change.

The Time-Series Design

This design involves successive observations
throughout a programmed intervention and
assesses the characteristics of the change proc-
ess. It is truly the mainstay of the proposed
design package because it serves several simul-
taneous functions. First, it is descriptive. The
descriptive function of the time series is par-
ticularly important when the intervention
extends over a considerable time period. The
time series is the only design to furnish a con-
tinuous record of fluctuations in the experi-
mental variables over the entire course of the
program. Such record keeping should consti-
tute an integral part of the experimental pro-

2 Whereas Campbell (1967) asserts that experimental
mortality is controlled by this design, mortality may, in
fact, act as a source of variance. A differential response
to treatment may systematically influence who drops
out of the experiment.
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gram; problems of reactivity (Webb, Camp-
bell, Schwartz, & Sechrest, 1966) area voided
by incorporating the measurement operations
as a natural part of the environment to which
one wishes to generalize.

Second, the time-series design functions as
an heuristic device. When coupled with a care-
fully kept historical log of potentially relevant
nonexperimental events, the time series is an
invaluable source of post hoc hypotheses re-
garding observed, but unplanned, changes in
program variables.3 Moreover, where treatment
programs require practical administrative de-
cisions, the time series serves as a source of
hypotheses regarding the most promising de-
cisions, and later as a feedback source regard-
ing the consequences and effectiveness of such
decisions.4

Finally, the time series can function as a
quasi-experimental design for planned inter-
ventions imbedded in the total program when a
control group is implausible. Figure 1 depicts a
time-series experiment with an extended inter-
vention ; of course, in some cases, the interven-
tion might simply be a discrete event.

A time-series analysis must demonstrate
that the perturbations of a system are not un-
controlled variations, that is, noise in the sys-
tem. It is precisely this problem of partitioning
noise from "effect" that has discouraged the
use of time series in the social sciences. Whereas
the uncontrolled variations in physical science
experiments can be assumed to be small when
compared to experimental effects, the uncon-
trolled variations encountered in social science
experiments often surpass the experimental
effects.

Ezekiel and Fox (1966) in a discussion of the
history of time series in the social sciences say
that:

In the early and middle 1920's many researchers were
completely unaware of problems connected with the
sampling significance of time-series. Then, under the
(partly misinterpreted) influence of such articles as
Yule's (1926) on "nonsense correlations," it became
fashionable to maintain that error formulas simply did
not apply to time-series. There was some implication
that reputable statisticians should leave time-series

8 Such a log could provide critical-incident data
(Flanagan, 19S4).

4 A data-overload situation, an ever present possibil-
ity, should be avoided by limiting observation to only
a select set of salient variables.

OBSERVATIONS N TIME

FIG. 1. A time series with an extended
intervention.

alone. . . . During the 1930's, therefore, some research
workers continued to apply regression methods to
time-series, but with considerable trepidation [p. 325].

The present paper contends that such a
reluctance to use the time-series design on
statistical grounds is no longer necessary. In a
subsequent section of this paper, appropriate
statistical procedures will be presented render-
ing the time series useful once again.

In summary, this design is more capable of
eliminating plausible rival hypotheses for data
than was the one-group pretest-posttest de-
sign6; it serves as a technique for generating
an overall description of programmatic change,
and it functions as a source of hypotheses re-
garding the nature of the process of change.

The Multiple Time-Series Design

This design is basically a refinement of the
simple time series. It is yet a more precise
method for investigating specific program hy-
potheses because it allows the time series of
the experimental group to be compared with
that of a control group. As a result, it offers a
greater measure of control over unwanted
sources of rival hypotheses.

The multiple time series is the first compon-
ent of the design package to require a compari-
son group. Use of a comparison group raises the

6 As with the one-group pretest-posttest design, and
for the same reasons, the present authors disagree with
Campbell's (1967) assertion that this design controls
for mortality. It is controlled, however, by the time-
lagged multiple time-series design.
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practical question of group-selection proced-
ures and in some situations, such as psycho-
therapy, it also raises the ethical problem of
using no-treatment or minimal treatment
groups. The time series suggests two ap-
proaches to these problems. First, one may use
a statistically nonequivalent comparison group
in which subjects have not been randomly as-
signed to treatment and comparison groups.
Usual problems with such a procedure can be
solved with special techniques of data handling.
Second, and preferably, one may use a time-
lagged control group where the intervention is
temporarily withheld from one group of sub-
jects but not another (see Figure 7, p. 305).
This procedure also provides information on
whether the effect of an intervention is tied to
a specific time.

THE ANALYSIS OF TIME-SERIES DATA

The data resulting from the best of experi-
mental designs is of little value unless subse-
quent statistical analyses permit the investi-
gator to test the extent to which obtained
differences exceed chance fluctuations. The
above design package, with its emphasis on
time-series designs, is a realistic possibility
only because of recent developments in the field
of mathematics. Appropriate analysis tech-
niques have evolved from work in such diverse
areas as economics, meteorology, industrial
quality control, and psychology. Historically,
the time-series design has been neglected due
to the lack of such appropriate analytical tech-
niques. Two statistical methods for solving the
problem of time-series analyses are presented
below.

Curve Fitting

Curve fitting is the simplest and best known
approach to the analysis of time-series data.
It involves fitting the data to the least squares
straight lines. The data are divided into two
classes, the class of observations, or points,
which precede the intervention and the class of
those which follow the intervention. One
straight line is used to fit the first class of
points and another to fit the second class. The
difference in slope and intercept of both lines
projected to X (the point of intervention) is
then calculated and an appropriate test of

X (INTERVENTION)

X

CLASS I CLASS I
OBSERVATIONS

l'']G. 2. Linear curve fitting.

significance is performed. One such significance
test is given by Mood (1950). Figure 2 illus-
trates the curve-fitting procedure.

There are at least two problems in using
curve fitting with time series. First, the as-
sumption of linearity is often inappropriate.
When one attempts to fit a straight line to a
set of observations in which the "underlying"
relationship is not linear, one may find that
the residuals are not randomly distributed; in
effect, the straight line accounts for only a
fraction of the total variance. In an attempt to
overcome this problem, Alexander (1946) pro-
vided a method for calculating the trend away
from linearity. If the trend is found to be sig-
nificant, one can specify the nature of the non-
linear trend by using Grant's (1956) procedure
for calculating the higher order trends (i.e., the
quadratic, cubic, quartic, etc., components of
the nonlinear trend). One may then calculate
the contributions of these higher order terms
to the total variance. When successive con-
tributions become insignificant, then one can
truncate the fitting procedure and fit the data
to a set of orthogonal polynomials by a least
squares procedure (Grant, 1956). However,
this solution is often unsatisfactory because as
higher order trends are calculated, an increas-
ing number of degrees of freedom are sacrificed.

The second weakness in the curve-fitting ap-
proach is its underlying assumption that the
repeated observations are independent samples
of a random variable. This assumption may be
violated by the time-series design because re-
peated observations through time are often
sequentially dependent (Holtzman, 1967).
To justify the use of curve-fitting procedures
one must argue that a sequentially dependent
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FIG. 3. Generating-function operation.

set of observations gives less information than
a completely independent set. Using this argu-
ment, one can apply the Bartlett (1935) cor-
rection on the number of degrees of freedom.

Generating Function

The generating-function procedure, although
less well known in the social sciences, is far
more powerful than curve fitting for analyzing
nonlinear, dependent time-series data, because
it makes positive use of the dependency ob-
servations; the generating model is specifically
derived from an analysis of such dependency.
The generating-function procedure provides a
solution to the problem of partitioning noise
from effect. It not only clarifies the manner in
which the time series is generated but also sug-
gests how the time series might change as a
function of different inputs. The dependent
time series can be understood as consisting of a
signal (the underlying dependency of the ob-
servations over time) which has been combined
with white noise (error). The generating func-
tion, then, operates to separate the signal from
the noise, as shown in Figure 3.

In the estimation problem,6 the time series
is given and a generating function must be
found which breaks the series into two com-
ponents—independent random fluctuations
(nonsystematic error) and the remaining de-
pendent, systematic variations. This problem
is equivalent to investigating the nature of the
time-series' dependency.

Stated mathematically, the problem is to
estimate a function F(D), such that the time
series #< = F (D) et, where et is error, and F (D)
is the function of a "shift" operator D, where

6 The estimation problem is one step removed from
linear curve fitting because even a linear generating
function can generate a nonlinear time series (Wold,
1965).

Dxt = xt-\. To identify the operator one can
investigate the nature of the time-series cor-
relation structure. The correlation structure
essentially tells us how well the series "remem-
bers" its past history, that is, how strongly xt
depends on xt-i, xt-z, etc. To study the correla-
tion structure of a time series, one calculates
the autocorrelation function. This function is
the correlation of a time series with itself, ob-
tained by pairing observations t units apart
(t = 1, 2,• • •)• This gives the serial correlation
as a function of lag. A test for the significance
of the autocorrelation function is given by
Anderson (1942).

Two generating functions have found wide
application in engineering, industrial, and
economic time series. The first of these is the
first-order moving-average function xt — ft
+ «i g(_i = (1 + fli-D) et, where a\ is a con-
stant. Here F(D) — 1 + a\D. In terms of the
observations, by substitution, this equation
can be shown to be equivalent to an "expon-
entially weighted moving average" of previous
observations, plus an error term. This says that
observation xt remembers the previous obser-
vation most and the other observations a bit
less. The closer the observation is to xt, the
more influential it is in predicting xt.

A second commonly used generating function
is the autoregressive process. The first-order
autoregressive process is xt = b\xt-..\ + et; or

(1 — biD)xt = et; or xt = r r~F>'et-
1 — v\LJ

This states that the next value of the time
series is given by a constant b\ times the previ-
ous value, plus an unpredictable noise et.
Examples of such time series are given in
Figure 4, with b\ = 0.9 and —0.9, respectively.

Two models for the generating function F(D)
have been presented: the first-order moving-
average model and the first-order autoregres-
sive model. In general, a model is called a
moving-average model if F(Z)) is a polynomial
in D, and an autoregressive model if F (£>) is the
inverse of a polynomial in D. The basic prob-
lem of fitting a model to the data can be divided
into three parts: (a) Identification—using the
data or any other additional knowledge to
suggest whether the series can be described as
moving average, autoregressive, or perhaps a
mixed model; (b) Estimation—-using the data
to estimate the parameters of F(£>); and (c)
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b=-.9

FIG. 4. A realization and;the autocorrelation function
of a discrete first-order autoregressive process (after
Watts, 1967).

Diagnostic Checking—estimation of the resi-
duals from the fitted model for lack of random-
ness and the use of this information to modify
the model. An excellent discussion of this fitting
procedure is given by Watts (1967) and Box,
Jenkins, and Bacon (1967).

The Exponentially Weighted Moving-Average
Model

Most time series in industrial, economic, or
engineering applications use many observations
(about 200 before statisticians feel comfortable),
thus permitting refined determinations of the
model and its parameters. However, in the
social sciences there tend to be fewer observa-
tions, thus simpler models are warranted.

Experience has shown that the modified
moving-average model is quite sufficient for
most problems, even those using a large num-
ber of observations. As Coutie (1962) said,
"The only justification for such a relatively

simple procedure is that we have applied it to a
wide range of [problems] and that it works
well [pp. 345-346]." The moving average can
be considered an approximate autoregressive
process and vice versa (Watts, 1967). However,
Box and Tiao (1965) said,

The fact that . . . the weight function F(£>) . . . is
uniform emphasizes the restrictiveness of the autore-
gressive model. Specifically, our results imply that this
model is only acceptable if observations near the begin-
ning and the end of the time-series have as much weight
in the estimation [of a shift in the time series following
an event E] as those close to the event E. In many
industrialjand economic applications, it seems much
more reasonable to suppose that as we move away from
E, the observations should become less and less informa-
tive about [the shift] [p. 188].

This is precisely what we find with the expon-
entially weighted moving-average model.

The exponentially weighted moving-average
model (EWMA) is a simple dynamic model
which probably will become as common for
time-dependent processes as the straight line
is for independent processes.7 This model8 may
be described as £t+\ = 7iA + et.

One calculates a sum of squares SS of the
deviations (£,• - *<)SJ SS = £ (£{ - xtf for
any value of 70- Letting 70 take values from — 1
to +1, one can plot SS as a function of 70,
picking that value of 70 which minimizes SS.

Notice that, if there is an increasing trend in
the series, the EWMA will always underesti-
mate the series. One can correct this by modify-
ing the model with a correction term called the
cumulative or integral control: £t+i = 7o$

+ et — 7iCC e(). That is, the predicted value
<-o

of xt+i equals the predicted value of xt times a
constant 70 plus the error («) of prediction at t,
minus a cumulative control parameter 71 times
the sum of the previous errors. Table 1 illus-
trates two steps of an estimation process, using
fictional data. With each successive step, the
error is reduced.

Estimation of 70 and 71 proceeds by minim-
izing the residual sum of squares SS = £

t
(At — xt)* with respect to both variables.

7 Stuart Hunter, University of Wisconsin, personal
communication, May 1968.

8 The predicted value of xt+\ (written ^(+1) equals the
predicted value of Xt times a constant 70 plus the error
(e) of prediction at t.
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One can do this on a computer by having the
computer plot 55 as a function of 70 and 71 on
a grid, and follow a search procedure (see
Figure 5).

Box and Jenkins (1962) stated that they
have rarely had to use the cumulative control
parameter in industrial applications, but this
modification of the EWMA model will make it
sufficiently powerful for most purposes.

Reference to the statistician's experience
with time series in industry for quality control
and cybernetic control engineering is appropri-
ate. The industrial problem involves charts of
production output in a factory where (a)
stability of production at an optimum level is
to be maintained, and (&) changes in produc-
tion are to be detected as a result of some ad-
ministrative or technical intervention. For
psychological problems, of course, behavior is
usually the product.

Significance Testing

Suppose we wish to determine whether there
has been a significant shift in the model lit for
the series in Region I following a planned in-
tervention, Event E (see Figure 6). Since the
residuals are now uncorrelated—that is, merely
white noise and hence independent—we can
perform a simple F test.

We would merely assume that the model in
Region I worked for Region II and proceed to

TABLE 1

AN ILLUSTRATION OF Two SUCCESSIVE STEPS IN
AN ESTIMATION PROCESS

Time-series observations11

T'

0
1
2
3
4
5
6

21?

1.000
1.000
1.000
l.SOO
2.000
2.000
2.000

Step 1

&

1.000
.500
.750
.720

1.140
1.430
1.285

Error

.000

.500

.250

.780

.860

.570

.715
2.897

Step 2

*•

1.000
.750

1.125
1.545
2.055
2.910
3.123

Error

.000

.250

.125

.005

.055

.910
1.123
2.311

Note.—In Step 1 70
= 0.500;7i = 0.500.

• Fictitious data.b Actual.
• Predicted.

•0.500; 71 =0.000. In Step 2 70

\
MINIMUM

POINT
MINIMUM
POINT

FIG. 5. Grid estimation of a two-parameter minimum
(after Box & Jenkins, 1%2).

forecast the observations in Region II, cal-
culating a residual sum of squares 55i = ̂  (£,
— xty where £t is the forecasted value of xt.
Then we would fit Region II separately and
calculate a residual 552. We then compute

\~/~Jf ' wnere «/i = 2 because

two parameters are involved in the estimation,
and dft = N% — 2, where Aro is the number of
points in Region II.

To identify the causes of unplanned shifts in
the model, one proceeds in a post hoc fashion to
search for that point in the time series where
the difference between the models for Regions
I and II yields the maximum F. By consulting
the log of concomitant events, hypotheses are
formed regarding the cause of the shift. These
hypotheses can then be tested by a replication
or by a multiple time-series experiment.

For the analysis of a time-lagged multiple
time series, as shown in Figure 7, one computes
F as before : The generating function for Group
1 is derived and then is used to predict the be-
havior of Group 2 in the same region. The sum

REGION I REGION 1C
OBSERVATIONS

FIG. 6. Testing for shift in a time series.
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REGION I

GROUP I

- GROUP!

REGION I

l

REGION IE

GROUP I GROUP I
INTERVENTION INTERVENTION

OBSERVATIONS

FIG. 7. A time-lagged multiple time series.

of squares of the differences between predicted
and actual values equals SSi. The SSt is the
residual sum of squares of the generating func-
tion derived from Group 2 applied to Group 2.
To assess treatment effects, one tests the hy-
pothesis that Groups 1 and 2 differ only in
Region II.

Application to Specific Problems

The question of whether the observation
points in a time series should consist of group
or individual data depends upon the nature of
the problem being studied. When one is inter-
ested primarily in the pattern of group func-
tioning or response to treatment and is not
particularly interested in individual perform-
ance, a simple summation across subjects is
appropriate. Here the generating function is
applied to the group mean.

Analysis of variance procedures can use the
average performance of a group over a period
of time, but the group mean is not necessarily
representative of the performance of any one
subject. One of the unique contributions of the
generating-function approach to time series is
its power to assess this individual functioning.
Once the performance of a single subject has
been assessed, however, one normally wishes to
generalize these findings to other subjects.
There are at least three procedures for evaluat-
ing the generality of a single subject's time
series.

First, each subject's time series can be con-
sidered a replication of the experiment. Using
appropriate nonparametric tests, one may cal-

culate the probability of obtaining the ob-
served number of significant Fs.

Second, the generating function for the time
series of one subject may be tested as a pre-
dictor of other subjects' time series. This pro-
cedure may involve a transformation. For
example, if two heart-rate polygraphs are out
of phase by half a period, a transformed gener-
ating function would result in successful pre-
diction ; simple summation would only obscure
the obvious relationship between the curves.

Third, as a simple test, a directional correla-
tion coefficient can be computed (Strahan,
1966). Wiener (1949) provided a sophisticated
procedure for calculating a correlation coeffi-
cient between time series, providing informa-
tion regarding both the signal and noise
components of each subject's^ time series.

SUMMARY

The present paper has presented a research
methodology which provides increments in pre-
cision and control appropriate to a number of
research problems and settings. The core of this
research methodology has been the time-series
design, which has been presented as a powerful
approach to be used in research settings where
control groups are unavailable and/or where
dependent observations are gathered over time
(e.g., research in the field, or where N = 1).
The time-series design has been shown to be a
dynamic design, responsive to feedback in the
sense that antecedent information can be used
for subsequent planning and evaluation within
an experiment. The choice of design, therefore,
need no longer be a binary (yes-no) decision
made in the initial planning phase of an experi-
ment.

A mathematical model has been presented
that utilizes the dependent nature of time-
series observations. The advantages of this
model over curve-fitting approaches were dis-
cussed. This model is appropriate to many re-
search problems in the social sciences, and its
implications have yet to be fully explored.
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ERRATA

In the article, "Short-Form Tests: A Methodological Review," by Philip Levy in
the June 1968 issue, the citation of "Guerting, 1962" in the thirteenth line on p. 411
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